

Digital Design : Bottom Up

Approach

Basic Block - Gates

CLK-

Digital Design : Bottom Up

Flip Flops-> Counter

Digital Design : Bottom Up

Finally a processor can be designed from basic building blocks

HDLs/Motivation

- How do we design the circuit? Do we draw it on pen and paper?
- Became tedious when the number of gates increased exponentially!
- Hardware Descriptive languages (HDLs) comes to the rescue.
 - We describe the digital circuits in terms of its structure and functionality.

Verilog

- Veriog is A Hardware Descriptive Language used to describe a circuit.
- Syntax is similar to G, but is not a programming language
- Synthesized (analogous to compiled in C) to give the circuit logic diagram
- HDL is another HDL commonly used

Synthesis of Verilog

FPGA

- Field Fogrammable Gate Array
- A fully configurable IC
- FPGAs contain programmable logic components called logic blocks.
- Hierarchy of reconfigurable interconnects that allow the blocks to be wired together.
- F GA can be made to work as a XOR gate, a Counter or even tager- an entire Processor!

Codingriniverilog

- Consists of various building blocks called Modules
- Communication between a module and its environment is achieved by using Ports
- Ports are of three types: input, output, inout

Module

- A 'Black Box' in Verilog with inputs, outputs and internal logic working.
- So, a module can be used to implement a counter.
- A module is defined as module < specific /pe>(<port list>);

Declaring Module

- module 4029(clk, a, b, c, d, reset, enable);

 //Assuming two more input pins, reset and
 //enable with their corresponding functioning
- Way 2: module 4029(clk, out, reset, enable);
 - What is the difference in the two?

Types omponts

- We need drivers/for this module in order to interact with other modules
- Driver is a way of defining something which can drive a load
- Two types of drivers:
 - Can store a value (for example, flip-flop)
 - Cannot store a value, but connects two points (for example, a wire)
- In Verilog, a driver which can store a value is called reg and t e one which cannot is called wire

Drivers for 4029 modules

- Ports defined as wires?
 - o ck
 - reset
 - enable
- We do not need to stores the values of these ports in our logical block.
- Ports defined as reg?
 - a,b,c,d
 - o but
- We need to store them so that we could modify their values when required.

Wife Vs/Reg

- reg can store a value, wire simply connects
- Most of the times, inputs are wire and outputs are reg
- Output of flip flop wire or reg?
- Output of XOR gate wire or reg ?
- Dutput of multiplexer + wire or reg?

- All the arithmetic as well as logical operators in Verilog are similar to C, except
 ++ and +- which are not available in Verilog.
- Conditional statements are also similar to C with following modifications:
 - { is replaced by begin.
 - } is replaced by end.

Combina orial Circuits

- ombinational circuits are acyclic interconnections of gates.

 - nd, Or, Not, Xor, Nand, Nor ultiplexers, Decoders, Encoders
- THE PRESENT INPUT ONLY.
- · How are these gates, muxs etc. abstracted in Verilog?
 - Gates, Add, Multiply ...: by simple operators like in C/
 - Multiplexers ...: by control statements like if-else, case, etc.
- C te level implementation of above high level operators done by Verilog synthesizer.

Control Statements

- rif-else, case/:
 - Exactly like C.
 - Hardware view: implemented using multiplexers
- ► for loops, repeats
 - for-loops/are synthesizable only if length of iteration is determined at compile time & finite.
 - repeat -similar to for loop.
 - Hardware View: All loops are unrolled during synthesis.

Control Statement Syntax

```
for (i = 0; i < n; i = i + 1)
                                    case(address)
begin
                                       0: ......
                                       1: ......
                                       2: ......
end
                                       default:.....
                                    endcase
if ( ......)
                                    repeat (18)
begin
                                     begin
end
else begin
                                    end
end
```

Assign/statements

- Con nuous assignment statement.
- Used for modeling only combinational logic.

module Businverter(input wire A, output wire B);
assign B = ~A;
endmodule

- Pasically B is shorted to ~A.
- HS should have variable of wire type.

Example I bit Full Adder

```
enunodule
```

Gate Level Description

```
odule full adder
  input wire a
  nput wire
   put wire cin.
 output wire sum,
   tput wire carry );
assign { carry,
   +b+cin;
 ndmodule
```

Behavioral Description

Seguential Circuits

- Circuis containing state elements are called sequential circuits
- POUTPUT DEPENDS ON THE PRESENT INPUT AS WELL AS ON ITS PRESENT STATE.
- The simplest synchronous state element: Edge triggered D Flip Flop

W do you implement such an element in Veriloo?

always @ block

- It is an abstraction provided in Verilog to mainly implement sequential circuits.
- Also used for combinational circuits.

```
always @(#sensitivity (list#)\
begin
```

```
............//No assign statements inside always@
end
```

Lecution of always block depends on the sensitivity list.

Sensitivity List

- Run Continuously, (mostly used in Test Benches)
 always
- Run when any variable changes its value.

 always @(*) //for combinational ckts
- Run when the variables \ a' \ or \ b' \ change their value.
 always \(\text{\text{\$\tex{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\
- Fun when a positive edge is detected on CLK. a ways @(posedge CLK) //for sequential ckt

initial/block

- An initial block is executed only once when simulation starts
- This is useful in writing test benches
- If we have multiple initial blocks, then all of them are executed at the beginning of imulation

```
P
ľ
```

Blocking and Non-blocking statement

Non-Jocking assignments happen in parallel. always @ (#sensitivity list #) begin

 $B \leq = A$;

 $C \le B$; // (A,B) = (1,2) -> (B,C) = (1,2)

Blocking assignments happen sequentially. always @ (#sensitivity list #) begin

B = A

(= B ; // (A,B) = (1,2) -> (B,C) = (1,1)

 \in d

Points/tomote

- Use always@(*) block with blocking assignments for combinational circuits
- Use always@(posedge clk) block with nonblocking assignments for sequential combinational circuits.
- Do not mix blocking and non-blocking tatements.

Complete 4029 module

```
е
```


Extras : bit literals

- If no size given, number is assumed to be 32 bits.
- If <size> is smaller than value
 MSB of value truncated
- If <size> is greater(than value)MSB of 'value' filled with zeros
- e.g. hexadecimal: 4'hB
- I o base given, number assumed to be decimal. e.g. - 11

4'b1011

Value
Base format
(d, b, h)

Size in bits

