
FPGA Design Challenge :Techkriti’14

Digital Design using Verilog – Part 1

Anurag Dwivedi

Digital Design : Bottom Up
Approach

Basic Block - Gates

Digital Design : Bottom Up
Approach

Gates -> Flip Flops

Digital Design : Bottom Up
Approach

Flip Flops-> Counter

Digital Design : Bottom Up
Approach

Finally a processor can
be designed from basic
building blocks

 How do we design the circuit? Do we draw it on
pen and paper?

 Became tedious when the number of gates
increased exponentially !

 Hardware Descriptive languages (HDLs) comes to
the rescue.
◦ We describe the digital circuits in terms of its structure

and functionality.

HDLs : Motivation

 Verilog is A Hardware Descriptive Language used to
describe a circuit.

 Syntax is similar to C, but is not a programming
language

 Synthesized (analogous to compiled in C) to give
the circuit logic diagram

 VHDL is another HDL commonly used

Verilog

Synthesis of Verilog

 Field Programmable Gate Array

 A fully configurable IC

 FPGAs contain programmable logic components called logic
blocks.

 Hierarchy of reconfigurable interconnects that allow the blocks
to be wired together.

 FPGA can be made to work as a XOR gate, a Counter or even
bigger- an entire Processor!

FPGA

FPGA : Logic Blocks

 Configured using a Hardware Descriptive
Language

 Can be configured in any way by the user

Programming FPGA

 Consists of various building blocks called
Modules

 Communication between a module and its
environment is achieved by using Ports

 Ports are of three types: input, output, inout

Coding in Verilog

 A “Black Box” in Verilog with inputs, outputs
and internal logic working.

 So, a module can be used to implement a
counter.

 A module is defined as module <specific
type>(<port list>);

Module

 One Input port for CLK
 Four binary output ports
 At every rising edge of clock, increment

output by 1

4029 Counter

 Way 1:
module 4029(clk, a, b, c, d, reset, enable);

//Assuming two more input pins, reset and
//enable with their corresponding functioning

 Way 2:
 module 4029(clk, out, reset, enable);

What is the difference in the two?

Declaring Module

 Way 1:
input clk;
input reset;
input enable;
output a,b,c,d;

 Way 2:

input clk;
input reset;
input enable;
output [3:0] out;

Declaring Ports

 We need drivers for this module in order to interact with
other modules

 Driver is a way of defining something which can drive a load

 Two types of drivers:
◦ Can store a value (for example, flip-flop)
◦ Cannot store a value, but connects two points (for example, a wire)

 In Verilog, a driver which can store a value is called reg and
the one which cannot is called wire

Types of Ports

 Ports defined as wires?
◦ clk
◦ reset
◦ enable

 We do not need to stores the values of these ports in
our logical block.

 Ports defined as reg?
◦ a,b,c,d
◦ out

 We need to store them so that we could modify their
values when required.

Drivers for 4029 modules

 Way 1:
wire clk;
wire reset;
wire enable;
reg a,b.c,d;

 Way 2:

wire clk;
wire reset;
wire enable;
reg [3:0] out;

Defining drivers for 4029

 module 4029(clk, out, reset, enable);
input wire clk;
input wire reset;
input wire enable;
output reg [3:0] out;

endmodule

Complete definition of
module

 reg can store a value, wire simply connects

 Most of the times, inputs are wire and
outputs are reg

 Output of flip flop – wire or reg ?
 Output of XOR gate – wire or reg ?
 Output of multiplexer – wire or reg ?

Wire Vs Reg

 We have seen how to define the outer
structure of the modules we will use.

 Time to define the internal structure and
functioning?

What now?

 All the arithmetic as well as logical
operators in Verilog are similar to C, except
++ and –- which are not available in Verilog.

 Conditional statements are also similar to C
with following modifications:
◦ { is replaced by begin.
◦ } is replaced by end.

Operational and Conditional
Statements

 Combinational circuits are acyclic interconnections of gates.
◦ And, Or, Not, Xor, Nand, Nor ……
◦ Multiplexers, Decoders, Encoders ….
◦ Adders, Multipliers ….

 OUTPUT DEPENDS ON THE PRESENT INPUT ONLY.

 How are these gates, muxs etc. abstracted in Verilog?
◦ Gates, Add, Multiply … : by simple operators like in C
◦ Multiplexers … : by control statements like if-else, case, etc.

 Gate level implementation of above high level operators done by
Verilog synthesizer.

Combinatorial Circuits

 if-else, case :
◦ Exactly like C.
◦ Hardware view: implemented using multiplexers

 for loops, repeat:
◦ – for-loops are synthesizable only if length of

iteration is determined at compile time & finite.
◦ repeat -similar to for loop.
◦ Hardware view: All loops are unrolled during

synthesis.

Control Statements

Control Statement Syntax

 Continuous assignment statement.

 Used for modeling only combinational logic.

module BusInverter(input wire A, output wire B);
assign B = ~A;

endmodule

 Basically B is shorted to ~A.
 RHS should have variable of wire type.

Assign statements

Example-1 bit Full Adder

Gate Level Description Behavioral Description

module full_adder(
input wire a,
input wire b,
input wire cin,
output wire sum,
output wire carry);

assign sum = a & ~b & ~cin | ~a & b
& ~cin |~a & ~b & cin | a & b & cin;

assign carry = a & b | a & cin | b &
cin;

endmodule

module full_adder(
input wire a,
input wire b,
input wire cin,
output wire sum,
output wire carry);

assign { carry, sum } =
a+b+cin;

endmodule

 Circuits containing state elements are called sequential circuits
 OUTPUT DEPENDS ON THE PRESENT INPUT AS WELL AS

ON ITS PRESENT STATE.
 The simplest synchronous state element: Edge triggered D Flip

Flop

 How do you implement such an element in Verilog?

Sequential Circuits

 It is an abstraction provided in Verilog to mainly
implement sequential circuits.

 Also used for combinational circuits.

always @(#sensitivity list#)
begin

 ………. //No assign statements inside always@
end

 Execution of always block depends on the sensitivity list.

always @ block

 Run continuously. (mostly used in Test Benches)
always

 Run when any variable changes its value.

always @(*) //for combinational ckts

 Run when the variables `a' or `b' change their value.
always @(a, b)

 Run when a positive edge is detected on CLK.

always @(posedge CLK) //for sequential ckt

Sensitivity List

 An initial block is executed only once when
simulation starts

 This is useful in writing test benches

 If we have multiple initial blocks, then all of

them are executed at the beginning of
simulation

initial block

module Counter(
input wire CLK,
output reg [3:0] OUT);

initial
OUT <= 0;

always @(posedge CLK)
OUT <= OUT + 1;

endmodule

Counter Example

 Non-blocking assignments happen in parallel.
always @ (#sensitivity list #) begin
B <= A ;
C <= B ; // (A,B) = (1,2) -> (B,C) = (1,2)
end

 Blocking assignments happen sequentially.
always @ (#sensitivity list #) begin
B = A ;
C = B ; // (A,B) = (1,2) -> (B,C) = (1,1)
end

Blocking and Non-blocking
statement

 Use always@(*) block with blocking
assignments for combinational circuits.

 Use always@(posedge clk) block with non-
blocking assignments for sequential
combinational circuits.

 Do not mix blocking and non-blocking
statements.

Points to note

module 4029(clk, out, reset, enable);
input wire clk;
input wire reset;
input wire enable;
output reg [3:0] out;

always @(posedge clk)
begin

if (reset == 0 && enable == 0)
begin
out <= out +1;
end

end
// continued to next page

Complete 4029 module

always @(reset or enable)
begin

if (reset == 1’b1)
begin
out <= 0;
end

end

endmodule

Complete 4029 module

 If no size given, number is assumed
to be 32 bits.

 If <size> is smaller than value
◦ MSB of value truncated

 If <size> is greater than value
◦ MSB of ‘value’ filled with zeros

 e.g. - hexadecimal: 4’hB

 If no base given, number assumed
to be decimal. e.g. - 11

Extras : bit literals

 Modular Circuits
 Test Benches
 Demonstration
 Problem Statement Discussion

For Tommorrow

	Slide 1
	Digital Design : Bottom Up Approach
	Digital Design : Bottom Up Approach
	Digital Design : Bottom Up Approach
	Digital Design : Bottom Up Approach
	HDLs : Motivation
	Verilog
	Synthesis of Verilog
	FPGA
	FPGA : Logic Blocks
	Programming FPGA
	Coding in Verilog
	Module
	4029 Counter
	Declaring Module
	Declaring Ports
	Types of Ports
	Drivers for 4029 modules
	Defining drivers for 4029
	Complete definition of module
	Wire Vs Reg
	What now?
	Operational and Conditional Statements
	Combinatorial Circuits
	Control Statements
	Control Statement Syntax
	Assign statements
	Example-1 bit Full Adder
	Sequential Circuits
	always @ block
	Sensitivity List
	initial block
	Counter Example
	Blocking and Non-blocking statement
	Points to note
	Complete 4029 module
	Complete 4029 module
	Extras : bit literals
	For Tommorrow

