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Digital Design : Bottom Up 
Approach

Basic Block - Gates 



Digital Design : Bottom Up 
Approach

Gates -> Flip Flops 



Digital Design : Bottom Up 
Approach

Flip Flops-> Counter 



Digital Design : Bottom Up 
Approach

Finally a processor can 
be designed from basic 
building blocks 



 How do we design the circuit? Do we draw it on 
pen and paper?

 Became tedious when the number of gates 
increased exponentially !

 Hardware Descriptive languages (HDLs) comes to 
the rescue.
◦ We describe the digital circuits in terms of its structure 

and functionality. 

HDLs : Motivation 



 Verilog is A Hardware Descriptive Language used to 
describe a circuit.

 Syntax is similar to C, but is not a programming 
language

 Synthesized ( analogous to compiled in C ) to give 
the circuit logic diagram 

 VHDL is another HDL commonly used 

Verilog 



Synthesis of Verilog



 Field Programmable Gate Array

 A fully configurable IC

 FPGAs contain programmable logic components called logic 
blocks.

 Hierarchy of reconfigurable interconnects that allow the blocks 
to be wired together.

 FPGA can be made to work as a XOR gate, a Counter or even 
bigger- an entire Processor!

FPGA 



FPGA : Logic Blocks



 Configured using a Hardware Descriptive 
Language 

 Can be configured in any way by the user

Programming FPGA



 Consists of various building blocks called 
Modules 

 Communication between a module and its 
environment is achieved by using Ports 

 Ports are of three types: input, output, inout

Coding in Verilog



 A “Black Box” in Verilog with inputs, outputs 
and internal logic working. 

 So, a module can be used to implement a 
counter. 

 A module is defined as module <specific 
type>(<port list>);

Module



 One Input port for CLK
 Four binary output ports
 At every rising edge of clock, increment 

output by 1

4029 Counter 



 Way 1: 
module 4029(clk, a, b, c, d, reset, enable); 

//Assuming two more input pins, reset and
//enable with their corresponding functioning 
  
 Way 2: 
   module 4029(clk, out, reset, enable);

What is the difference in the two?

Declaring Module



 Way 1: 
input clk; 
input reset; 
input enable; 
output a,b,c,d; 

 
 Way 2: 

input clk; 
input reset; 
input enable; 
output [3:0] out;

Declaring Ports



 We need drivers for this module in order to interact with 
other modules

 Driver is a way of defining something which can drive a load 
 
 Two types of drivers: 
◦ Can store a value (for example, flip-flop) 
◦ Cannot store a value, but connects two points (for example, a wire) 

 In Verilog, a driver which can store a value is called reg and 
the one which cannot is called wire

Types of Ports



 Ports defined as wires? 
◦  clk
◦ reset 
◦ enable

 We do not need to stores the values of these ports in 
our logical block. 

 Ports defined as reg? 
◦ a,b,c,d 
◦ out 

 We need to store them so that we could modify their 
values when required.

Drivers for 4029 modules



 Way 1: 
wire clk; 
wire reset; 
wire enable;
reg a,b.c,d; 

 
 Way 2: 

wire clk; 
wire reset; 
wire enable; 
reg [3:0] out;

Defining drivers for 4029



  module 4029( clk, out, reset, enable);
input wire clk; 
input wire reset; 
input wire enable; 
output reg [3:0] out;

endmodule

Complete definition of 
module



 reg can store a value, wire simply connects 

 Most of the times, inputs are wire and 
outputs are reg

 Output of flip flop – wire or reg ?
 Output of XOR gate – wire or reg ?
 Output of multiplexer – wire or reg ?

Wire Vs Reg



 We have seen how to define the outer 
structure of the modules we will use.

 Time to define the internal structure and 
functioning? 

What now? 



 All the arithmetic as well as logical 
operators in Verilog are similar to C, except 
++ and –- which are not available in Verilog. 

  Conditional statements are also similar to C 
with following  modifications: 
◦  { is replaced by begin. 
◦  } is replaced by end.

Operational and Conditional 
Statements



 Combinational circuits are acyclic interconnections of gates. 
◦ And, Or, Not, Xor, Nand, Nor …… 
◦ Multiplexers, Decoders, Encoders …. 
◦ Adders, Multipliers …. 

 OUTPUT DEPENDS ON THE PRESENT INPUT ONLY. 

 How are these gates, muxs etc. abstracted in Verilog? 
◦ Gates, Add, Multiply … : by simple operators like in C 
◦ Multiplexers … : by control statements like if-else, case, etc. 

 Gate level implementation of above high level operators done by 
Verilog synthesizer.

Combinatorial Circuits



 if-else, case : 
◦ Exactly like C.
◦ Hardware view: implemented using multiplexers 

 for loops, repeat: 
◦ – for-loops are synthesizable only if length of 

iteration is determined at compile time & finite. 
◦ repeat -similar to for loop. 
◦ Hardware view: All loops are unrolled during 

synthesis.

Control Statements



Control Statement Syntax



 Continuous assignment statement. 

 Used for modeling only combinational logic. 

module BusInverter(  input wire A,  output wire B ); 
assign B = ~A; 

endmodule 
 
 Basically B is shorted to ~A. 
 RHS should have variable of wire type.

Assign statements



Example-1 bit Full Adder

Gate Level Description Behavioral Description 

module full_adder( 
input wire a, 
input wire b, 
input wire cin,  
output wire sum, 
output wire carry  );

assign sum = a & ~b & ~cin | ~a & b 
& ~cin |~a & ~b & cin | a & b & cin; 

assign carry = a & b | a & cin | b  & 
cin; 

endmodule

module full_adder( 
input wire a, 
input wire b, 
input wire cin, 
output wire sum, 
output wire carry ); 

assign { carry, sum } = 
a+b+cin; 

endmodule



 Circuits containing state elements are called  sequential circuits
 OUTPUT DEPENDS ON THE PRESENT INPUT AS WELL AS 

ON ITS PRESENT STATE.
 The simplest synchronous state element: Edge triggered D Flip 

Flop

 How do you implement such an element in Verilog?

Sequential Circuits



 It is an abstraction provided in Verilog to mainly  
implement sequential circuits. 

 Also used for combinational circuits. 
  
always @(#sensitivity list#) 
begin 

 ……….   //No assign statements inside always@ 
end 

 Execution of always block depends on the sensitivity list.

always @ block



 Run continuously. (mostly used in Test Benches)
always 

 
 Run when any variable changes its value. 

always @(*) //for combinational ckts 

 Run when the variables `a' or `b' change their value. 
always @(a, b) 

 
 Run when a positive edge is detected on CLK. 

always @(posedge CLK) //for sequential ckt

Sensitivity List



 An initial block is executed only once when 
simulation starts 

 
 This is useful in writing test benches 
 
 If we have multiple initial blocks, then all of 

them are executed at the beginning of 
simulation 

initial block



module Counter( 
input wire CLK, 
output reg [3:0] OUT  ); 

initial 
OUT <= 0; 

always @(posedge CLK) 
OUT <= OUT + 1; 

endmodule 

Counter Example



 Non-blocking assignments happen in parallel. 
always @ ( #sensitivity list # ) begin 
B <= A ; 
C <= B ; // (A,B) = (1,2) -> (B,C) = (1,2) 
end 

 Blocking assignments happen sequentially. 
always @ ( #sensitivity list # ) begin 
B = A ; 
C = B ; // (A,B) = (1,2) -> (B,C) = (1,1) 
end 

Blocking and Non-blocking 
statement



 Use always@(*) block with blocking 
assignments for combinational circuits.

 Use always@(posedge clk) block with non- 
blocking assignments for sequential 
combinational circuits.

 Do not mix blocking and non-blocking 
statements.

Points to note



module 4029( clk, out, reset, enable);
input wire clk; 
input wire reset; 
input wire enable; 
output reg [3:0] out;

always @(posedge clk)
begin

if (reset == 0 && enable == 0)
begin
out <= out +1;
end

end
// continued to next page 

Complete 4029 module



always @(reset or enable)
begin

if (reset == 1’b1)
begin
out <= 0;
end

end

endmodule

Complete 4029 module



 If no size given, number is assumed 
to be 32 bits. 

 If <size> is smaller than value 
◦ MSB of value truncated 

 If <size> is greater than value 
◦ MSB of ‘value’ filled with zeros 

 e.g. - hexadecimal: 4’hB 

 If no base given, number assumed 
to be decimal. e.g. - 11 

Extras : bit literals 



 Modular Circuits
 Test Benches
 Demonstration
 Problem Statement Discussion

For Tommorrow
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