FPGA Design Challenge
Techkriti 2013

Digital Logic Design using Verilog
Part 2

By
Neeraj Kulkarni

Recap

Verilog- Hardware Description Language
Modules

Combinational circuits

assign statement

Control statements

Sequential circuits

always@ block

Blocking and non-blocking statements

Parameterized modules

A generalized type of module.
Can be instantiated to any value of parameter.

Parameterization is a good practice for
reusable modules

Useful in large circuits.

Example: N-bit adder

module AdderN #(parameter N = 4)(
input wire [N-1:0] IN1,
input wire [N-1:0] IN2,
output reg [N-1:0] OUT

)5
always @(*)
OUT <= IN1 + IN2;
endmodule

Modular Circuits

* Time to connect the “black boxes” together ©

e A modular circuit is one where sub-modules
are initialized with interconnects to form even
a larger circuit.

e Each sub-module resides in its own Verilog
file. A sub-module may use another sub-
module in its circuit.

Example — Full Adder

module FAdder(
input wire [3:0] A, B,
output wire cout,
output wire [3:0] S

wire c0, c1, c2;

FA fa0O(.a(A[0]), .b(B]

FA fal(.a(A[1]), .b(B]

FA fa2(.a(A[2]), .b(B]

FA fa3(.a(A[3]), .b(B]
endmodule

wW N RO

module FA(

input wire a, b, cin,

output wire sum,
output wire cout

);

assign { carry, sum } = a+b +cin;

endmodule

.cin(0),.cout(c0), .sum(S[0]));

.cin(c0), .cout(cl), .sum(S[1]
.cin(cl), .cout(c2), .sum(S[2]

),
));

.cin(c2), .cout(cout), .sum(S

3]));

Instantiation

¢ |V|OdU|€SZ <Module Name> <Instance name>

(.in1(...),
in2(...),
.outl(...),
.out2(...));

e Parametrized Module:

<Module Name>
#(.<Parameter Name>(value))
<Instance name>
(.in1(...),

in2(...),

.outlf(...),

.out2(...));

Example:

AdderN #(.N(16)) Add1
(.IN1(in1),

IN2(in2),

.OUT(out));

Points to Note

All output ports of instantiated sub-module
should be of wire data-type.

Note in previous example, c0,c1,c2 and S are
wires.

Inputs may be reg or wire.

Suppose in above, [3:0] S was of reg type.
— Declare a dummy wire variable [3:0] add

— Pass add[0], add[1] ... to the instantiations

— Finally put:

always@(*)
S <=add;

Test Bench

* Used to test the functionality of design by
simulation.

* |nstantiate our top most module and give
varying inputs & verify if the outputs match

expected results.

* Added functionalities in TestBench:
— Delays
— Sdisplay(), Smonitor()

Delays

Not synthesized

Can be used to model delays in actual circuit during
simulation

Used mostly in Test Benches to provide inputs at
particular instants.

Syntax: #<time steps>
— wire #10 out; assignout=a & b;
— wire out; assigh #10 out = inl & in2;
— #10gq=x+Yy;
— q=#10x+Yy;

Most common: always
#5 clk = ~clk;

More Features

* Sdisplay() -
— used for printing text or variables to screen
— syntax is the same as for printfin C

— Sdisplay("time, \tclk, \tenable, \tcount");

* Smonitor() —

— keeps track of changes to the variables in the list (clk, enable,
count).

— whenever any of them changes, it prints their value.

— only written once in initial block.
— Smonitor("%d,\t%b,\t%b,\t%b,\t%d",Stime, clk, enable,count);

e Sfinish

— Terminating simulation

Example — Test bench Counter

module counter_tb;
reg clk, reset, enable;
wire [3:0] count;

counter CO(.clk (clk), .reset (reset), .enable (enable), .count (count));
initial begin
clk = 0;
reset =0;
enable = 0;
end
always
#5 clk = Iclk;
initial begin
Sdisplay("time,\tclk,\tenable,\tcount");
Smonitor("%d,\t%b,\t%b,\t%d",Stime, clk,enable,count);

end
initial
#100 Sfinish;
endmodule

FPGA Design Challenge Problem Statement
Gaussian Random Number Generator

Top Module

* To construct the following module:

module GRNG(

input wire mean, var,
input wire enable,

output reg [N-1:0] random_out
);

endmodule

Write a Test Bench to get large number of samples from the
module and write them in a file.

Read data from file using any plotting routine (MATLAB, etc)
and plot the distribution.

Some Probability theory

p(s)

0.16

* Random Variables 0.14
_ _ 0.12

— Outcome of dice, coin 010

* Probability Distribution 0.08

0.06
0.04-
0.02

— Uniform distribution,
— @Gaussian Distribution

The Mommal DigtAbution

1 z—p)?
fla) = —e=e™ w

Mean: u

Variance: Standard Deviation
=< X% —pt >

Central Limit Theorem

The mean of a sufficiently large number of independent
random variables, will be approximately normally
distributed.

Main principle in generating Gaussian distributed random
variable.
X14Xo+ ot X

Y =Sy , X; are uniformly distributed
RV with mean =, and variance = ¢*

Then VN(Sy —)~ N(0, 6?).
To convert that to a required Gaussian Distribution we can
add required mean to each random number and

multiply/divide by required variance to get a Gaussian
distributed random numbers.

Linear Feedback Shift Registers

Uniform Pseudo-Random Number Generation

(x
XOR/XNOR of some bits (taps) of previous state is input
bit of the shift register.

Length of Random cycle dependent on taps.

One with maximum cycle can be considered to fairly
uniformly random.

List of taps for given length:
http://www.xilinx.com/support/documentation/applic
ation_notes/xapp052.pdf

Note

 The approach mentioned above is one of the

many possible solutions to the problem
statement.

* You should search more and come up with a
better solution.

Anderson-Darling Test

 The Anderson—Darling test is a statistical test of whether a
given sample of data is drawn from a given probability
distribution.

* Test for normality:
— In our case mean and variance of samples known
X; — i where Xi = n random samples obtained.
T

Y; = : L = mean, 2= variance

— =Y [(2i - 1)In®(Y;) + (2(n— 1) + 1) In(1 — (Y;))]
i=1
— ¢ = standard normal cumulative distribution function.

— If A% > 2.49, implies the data is not normally distributed.

— To evaluate above, need numerical approximations of each of log
and ¢

Extra Task

Only if you complete the compulsory task
Write an encoder and decoder for LDPC codes.

Add the GRN (Noise) to output of encoder and
pass it as input to decoder.

Do it for large number samples, and get
number of errors.

Repeat for different values of SNR and plot the
BER curve for the system.

Questions?

