
FPGA Design Challenge
Techkriti 2013

Digital Logic Design using Verilog

Part 1

By

Neeraj Kulkarni

Introduction

• Verilog: A Hardware Description Language

 -mostly describes a digital circuit

• Motivation for such a language

• Adds a level of abstraction in digital design

• Basic Idea:

Behavioral

Description of
required circuit

A complete
circuit diagram

Verilog
Synthesizer

Introduction to Verilog
• Data types?

 -Yes, called Drivers in Verilog

• Drivers: wire and register
– Wire: Connects to points in circuit – wire clk

– Register (reg) : Stores values – reg A

• Arrays?
– wire [31:0] in

– reg [16:0] bus

Modules
• Modules are like ‘Black boxes’.

• Example: Inverter
 module Inverter(

 input wire A,

 output wire B

);

 assign B = ~A;

 endmodule

Module Inputs Outputs

Note:
Input and Output
ports of the module
should be specified.

Combinational Circuits

• Combinational circuits are acyclic interconnections of
gates.

– And, Or, Not, Xor, Nand, Nor ……

– Multiplexers, Decoders, Encoders ….

– Adders, Multipliers ….

• How are these gates, muxs etc. abstracted in Verilog?

– Gates, Add, Multiply … : by simple operators like in C

– Multiplexers … : by control statements like if-else, case, etc.

• Gate level implementation of above high level
operators done by Verilog synthesizer.

Some Operators
Arithmetic * Multiply

/ Division

+ Add

- Subtract

% Modulus

+ Unary plus

- Unary minus

Logical ! Logical negation

&& Logical and

|| Logical or

Relational > Greater than

< Less than

== Equality

Shift >> Right shift

<< Left shift

Control Statements

• if-else, case :

– Exactly like C.

– Hardware view: implemented using multiplexers

• for loops, repeat:

– for-loops are synthesizable only if length of iteration
is determined at compile time & finite.

– repeat -similar to for loop.

– Hardware view: All loops are unrolled during
synthesis.

Syntax-Control Statements

 for (i = 0; i < n; i = i +1)
 begin
 ……..
 end

case(address)
 0 : …….
 1 : …….
 2 : ……..
 default : ……
endcase

if (…….)
begin
 …………
end
else begin
 ………..
end

repeat (18)
begin
 ………..

end

assign statement
• Continuous assignment statement.

• Used for modeling only combinational logic.

 module BusInverter(

 input wire A,

 output wire B

);

 assign B = ~A;

 endmodule

• Basically B is shorted to ~A.

• RHS should have variable of wire type.

Example-1 bit Full Adder

module full_adder(
 input wire a,
 input wire b,
 input wire cin,
 output wire sum,
 output wire carry
);
 assign sum = a & ~b & ~cin | ~a
& b & ~cin |~a & ~b & cin | a & b &
cin;
 assign carry = a & b | a & cin | b
& cin;
endmodule

module full_adder(
 input wire a,
 input wire b,
 input wire cin,
 output wire sum,
 output wire carry
);
 assign { carry, sum } = a+b+cin;
endmodule

 Gate Level Description Behavioral Description

Sequential Circuits

• Circuits containing state elements are called
sequential circuits.

• The simplest synchronous state element: Edge-
Triggered D Flip-Flop

• How do you implement such an element in
Verilog?

ff
Q

D

C

C

D

Q

always@ Block

• It is an abstraction provided in Verilog to mainly
implement sequential circuits.

• Also used for combinational circuits.

• Structure of always block:

 always @(#sensitivity list#)

 begin

 ………. //No assign statements inside always@

 end

• Execution of always block depends on the
sensitivity list.

The Sensitivity List

• Run continuously. (mostly used in Test Benches)
 always

• Run when any variable changes its value.
 always @(*) //for combinational ckts

• Run when the variables `a' or `b' change their value.
 always @(a, b)

• Run when a positive edge is detected on CLK.
 always @(posedge CLK) //for sequential ckts

initial block

•An initial block is executed only once when
simulation starts

•This is useful in writing test benches

•If we have multiple initial blocks, then all of
them are executed at the beginning of
simulation

Example- Counter

 module Counter(

 input wire CLK,

 output reg [31:0] OUT

);

 initial

 OUT <= 0;

 always @(posedge CLK)

 OUT <= OUT + 1;

 endmodule

Note the ‘<=‘ sign for
register assignment

Divide by 9 counter
In Verilog

 module Counter(
 input wire CLK,
 output reg [4:0] OUT
);
 initial
 OUT <= 4’b0;
 always @(posedge CLK)
 begin
 if(OUT==4’b1000)
 OUT <= 4’b0;
 else
 OUT <= OUT + 1;
 end
 endmodule

Divide by 9 counter
By hand analysis

Designing this is messy!

Blocking and Non-Blocking Statements

• Non-blocking assignments happen in parallel.
always @ (#sensitivity list #) begin

 B <= A ;

 C <= B ; (A,B) = (1,2) -> (B,C) = (1,2)

end

• Blocking assignments happen sequentially.
always @ (#sensitivity list #) begin

 B = A ;

 C = B ; (A,B) = (1,2) -> (B,C) = (1,1)

end

Points to Note

• Use always@(*) block with blocking
assignments for combinational circuits.

• Use always@(posedge CLK) block with non-
blocking assignments for sequential circuits.

• Do not mix blocking and non-blocking
assignments.

Extras- Bit Literals

• If no size given, number is assumed
to be 32 bits.

• If <size> is smaller than value

– MSB of value truncated

• If <size> is greater than value

– MSB of ‘value’ filled with zeros

• e.g. - hexadecimal: 4’hB

• If no base given, number assumed to
be decimal. e.g. - 11

4’b1011

Size in bits

Base format
(d, b, h)

Value

More to come

• Parameterized Modules

• Modular Circuits

• Test Benches

• FPGA Design Challenge, Techkriti 13

– Problem Statement Discussion

Questions?

