FPGA Design Challenge
Techkriti 2013

Digital Logic Design using Verilog
Part 1

By
Neeraj Kulkarni

Introduction

Verilog: A Hardware Description Language

-mostly describes a digital circuit

Motivation for such a language

Adds a level of abstraction in digital design

Basic Idea:

Behavioral

Description of
required circuit

Verilog

Synthesizer l

A complete

circuit diagram

Introduction to Verilog

* Data types?
-Yes, called Drivers in Verilog

* Drivers: wire and register
— Wire: Connects to points in circuit — wire clk
— Register (reg) : Stores values —reg A

* Arrays?
— wire [31:0] in
— reg [16:0] bus

Modules

e Modules are like ‘Black boxes'.

Inputs

Outputs

 Example: Inverter
module Inverter|(
input wire A,
output wire B

assign B = ~A;
endmodule

Note:

Input and Output
ports of the module
should be specified.

Combinational Circuits

 Combinational circuits are acyclic interconnections of
gates.
— And, Or, Not, Xor, Nand, Nor
— Multiplexers, Decoders, Encoders
— Adders, Multipliers

* How are these gates, muxs etc. abstracted in Verilog?
— Gates, Add, Multiply ... : by simple operators like in C
— Multiplexers ... : by control statements like if-else, case, etc.

* Gate level implementation of above high level
operators done by Verilog synthesizer.

Some Operators

Arithmetic * Multiply

/ Division

+ Add

- Subtract

% Modulus

+ Unary plus

- Unary minus
Logical ! Logical negation

&& Logical and

| | Logical or
Relational > Greater than

< Less than

== Equality
Shift >> Right shift

<< Left shift

Control Statements

e if-else, case:
— Exactly like C.
— Hardware view: implemented using multiplexers

e for loops, repeat:

— for-loops are synthesizable only if length of iteration
is determined at compile time & finite.

— repeat -similar to for loop.

— Hardware view: All loops are unrolled during
synthesis.

Syntax-Control Statements

for(i=0;i<n;i=i+1) case(address)

begin O: ...
........ 1: ...

end 2 ...

default:
endcase

if (.......) repeat (18)

begin begin

end

else begin end

assign statement

Continuous assignment statement.
Used for modeling only combinational logic.

module Buslnverter(
input wire A,
output wire B
);
assign B = ~A;
endmodule

Basically B is shorted to ~A.
RHS should have variable of wire type.

Example-1 bit Full Adder

module full _adder(module full _adder(
input wire a, input wire a,
input wire b, input wire b,
input wire cin, input wire cin,
output wire sum, output wire sum,
output wire carry output wire carry
););
assignsum=a & ~b & ~cin | ~a assign { carry, sum } = a+b+cin;
&b &~cin|~¥a&~b&cin|a&b&|endmodule
cin;
assigncarry=a&b|a&cin|b
& cin;
endmodule
Gate Level Description Behavioral Description

Sequential Circuits

e Circuits containing state elements are called
sequential circuits.

* The simplest synchronous state element: Edge-
Triggered D Flip-Flop

D —
C Q
C

p_/ '\ /
o/ —C
* How do you implement such an element in
Verilog?

always@ Block

It is an abstraction provided in Verilog to mainly
implement sequential circuits.

Also used for combinational circuits.

Structure of always block:

always @ (#sensitivity list#)
begin

.......... //No assign statements inside always@
end

Execution of always block depends on the
sensitivity list.

The Sensitivity List

Run continuously. (mostly used in Test Benches)
always

Run when any variable changes its value.
always @(*) //for combinational ckts

Run when the variables 'a' or 'b' change their value.
always @(a, b)

Run when a positive edge is detected on CLK.
always @(posedge CLK) //for sequential ckts

initial block

e An initial block is executed only once when
simulation starts

eThis is useful in writing test benches

e|f we have multiple initial blocks, then all of
them are executed at the beginning of
simulation

Example- Counter

module Counter(
iInput wire CLK,
output reg [31:0] OUT

initial
OUT <=0;
always @(posedge CLK)
OUT <= OUT + 1;
endmodule

Note the ‘<=‘ sign for
register assignment

Divide by 9 counter

In Verilog

module Counter(
input wire CLK,
output reg [4:0] OUT

initial
OUT <= 4'b0;
always @(posedge CLK)
begin
if(OUT==4"b1000)
OUT <= 4'b0;
else
OUT <= OUT + 1;
end
endmodule

Divide by 9 counter
By hand analysis

Designing this is messy!

Blocking and Non-Blocking Statements

* Non-blocking assignments happen in parallel.
always @ (#sensitivity list #) begin

B<=A;

C<=B; (A,B) = (1,2) -> (B,C) = (1,2)
end
* Blocking assighments happen sequentially.
always @ (#sensitivity list #) begin

B=A;

C=B; (A,B) =(1,2) -> (B,C) = (1,1)
end

Points to Note

* Use always@(*) block with blocking
assignments for combinational circuits.

e Use always@(posedge CLK) block with non-
blocking assignments for sequential circuits.

* Do not mix blocking and non-blocking
assignments.

4’b1011

|

Value

Base format
(d, b, h)

Size in bits

Extras- Bit Literals

If no size given, number is assumed
to be 32 bits.

If <size> is smaller than value

— MSB of value truncated

If <size> is greater than value

— MSB of ‘value’ filled with zeros
e.g. - hexadecimal: 4’hB

If no base given, number assumed to
be decimal. e.g. - 11

More to come

Parameterized Modules

Modular Circuits

Test Benches

FPGA Design Challenge, Techkriti 13

— Problem Statement Discussion

Questions?

