
Nikhil Gupta

FPGA Challenge

Takneek 2012

RECAP

FPGA

• Field Programmable Gate Array

• Matrix of logic gates

• Can be configured in any way by the user

• Codes for FPGA are executed in parallel

• Configured using a Hardware Description Language

(HDL)

• Verilog – A Hardware Description Language

A Practical Example

• MCU

• ISR (Interrupt Service Routine)

• One needs to take care of its length (Remember! Use of flags)

• FPGA

• Little clouds of control logic (called blocks/modules) keep running

simultaneously

• No chance of missing an interrupt

Verilog

• Not a programming language despite the syntax being

similar to C

• Describes an electronic model (for our purposes, the

circuit is digital in nature)

• Synthesized (analogous to compiled for C) to give the

circuit logic diagram

Synthesis of Verilog

Synthesis Flow

Coding in Verilog

• Consists of various building blocks called Modules

• Communication between a module and its environment is

achieved by using Ports

• Ports are of three types: input, output, inout

Basic Logic Diagram for a 4029 Counter

• Name: 4029

• Input Ports: One

• Output Ports: Four

• Internal Logic: At every rising edge of the clock, increment

the output by one

Module

• A “Black Box” in Verilog with inputs, outputs and internal

logic working.

• So, a module can be used to implement a counter.

• A module is defined as

module <specific type>(<port list>);

Defining 4029 module

• Way 1:
• module 4029(clk,out,reset,enable); //Assuming two more input pins, reset and

 //enable with their corresponding functioning

 OR

• Way 2:
• module 4029(clk, a, b, c, d, reset, enable);

• Size of Port out?

• Input and Output Ports in each of the above?

• Every module ends with the statement

 endmodule

Declaring Ports

• Way 1:

input clk;

input reset;

input enable;

output a,b,c,d;

• Way 2:

input clk;

input reset;

input enable;

output [3:0] out;

Drivers in Verilog

• We need drivers for this module in order to interact with

the ports and describe its logical working.

• Driver is a way of defining something which can drive a

load

• Two types of drivers:

• Can store a value (for example, flip-flop)

• Cannot store a value, but connects two points (for example, a wire)

• In Verilog, a driver which can store a value is called reg

and the one which cannot is called wire.

Drivers for 4029 module

• Ports defined as wires?

• clk

• reset

• enable

We do not need to stores the values of these ports in our logical

block.

• Ports defined as reg?

• a,b,c,d

• out

We need to store them so that we could modify their values when

required.

Defining Drivers for 4029 module

• Way 1:

wire clk;

wire reset;

wire enable;

reg a,b.c,d;

• Way 2:

wire clk;

wire reset;

wire enable;

reg [3:0] out;

Operators and Conditional Statements

• All the arithmetic as well as logical operators in Verilog

are similar to C, except ++ and – which are not available

in Verilog.

• Conditional statements are also similar to C with following

modifications:

• { is replaced by begin.

• } is replaced by end.

initial block

• It is executed only in the beginning of the simulation.

• One can have many initial blocks. In this case, all of them

will be executed in the beginning of the simulation.

• Syntax

initial begin

//Code

end

always block

• Syntax

 always @(condition)

 begin

 //Code

 end

• Blocks starting with keyword always run simultaneously.

• @ symbol is used to specify the condition which should

be satisfied for the execution of this block.

Usage of always block

• always

The code in this block will keep on executing.

• always @(a)

The code in this block will be executed every time the value of a

changes.

• always @(posedge clk)

This block is executed at every positive edge of clk.

Blocking and Non-blocking assignments

• A blocking statement (consists of an = sign) must be

executed before the execution of statements following it in

a sequential manner.

• Non-blocking statements (consist of <= sign) within a

block are executed simultaneously.

• We will try to use non-blocking statements as much as

possible.

module 4029 (input wire clk,

 input wire reset,

 input wire enable,

 output [3:0] reg out); //You can declare direction as well as data type

 //in the module definition.

initial

begin

out <= 4’b0000;

end

always @(posedge clk)

begin

 if (reset == 0 && enable == 0)

 begin

 out <= out +1;

 end

end

always @(reset or enable)

begin

 if (reset == 1’b1)

 begin

 out <= 0;

 end

 if (enable == 1’b1)

 begin

 //Code if you want it to do something.

 end

end

endmodule

Assign statement

• Used to control the output wires which cannot be done

using a blocking statement.

• It is executed continuously.

• Syntax:

• module Repeater(input wire A, output wire B);

• assign B = A;

• endmodule;

Modular Circuits

• Various modules are interconnected to make a larger

circuit (or module).

• Each sub-module has a separate Verilog file.

• A sub-module may have another sub-module in its circuit.

• One needs to indicate the top level module before

synthesis.

MODULAR CIRCUITS

Example

• Sub-module 1

• module Sub1 (input wire a1, output reg [7:0] b1);

• Sub-module 2

• module Sub2 (input wire [7:0] a2, output reg [7:0] b2);

• Top Module

• Module Top (input wire a, output reg [7:0] b);

Instantiation

• Used to interconnect various modules.

• In the above example, we need to instantiate the two sub-

modules in the top level module.

• This is done as follows:

• wire [7:0] c;

• Sub1 Encoder (.a1(a), .b1(c));

• Sub2 Decoder (.a2(c), .b2(b));

PROBLEM STATEMENT

FPGA Challenge

• On the Spot Event

• Prelims

• Half an hour quiz

• Based on fundamentals of Verilog

• Finals

• Level 1:

• Implement Verilog modules to solve the given design problems

• Level 2:

• Simulation of these Verilog modules

JUDGING CRITERIA

• Prelims:

• 10 top scoring teams will move to the finals.

• Finals:

• Level 1: Judging shall be done on the basis of:

• Number of problems solved

• Number of modules used

• Ease of understanding of the code

• Extra features if any

• Level 2:

• Teams will be provided points for this level only when their simulations

of the problems solved by them work perfectly.

Important Note

• Team strength should be 2.

• At least one member of each team should belong to Y11

batch.

• The Team could comprise of two Y11 Students but it could

not be comprised of two non Y11 students.

Contacts

Takneek Website :

http://students.iitk.ac.in/takneek/ > events > Electronics >
FPGA

FB Group : www.facebook.com/eclub.iitk

