
Electronics Club

Verilog Lecture Series
IIT KANPUR

Pre-requisite

• Basics of any programming language

• Easy for those with some programming
experience

• Some background in digital logic will also be
helpful

Need

• Execute different code blocks simultaneously
as opposed to sequential execution of most
programming languages.

• Make circuits easier to verify and reduces
error

Let’s Get Started

Terminology

• Verilog: Hardware Description Language (HDL)

• Used to model electronic systems

• Modules :- “ Black Boxes ”

• Ports :- input , output , inout

• Case Sensitive

• Synthesis

http://en.wikipedia.org/wiki/Hardware_description_language
http://en.wikipedia.org/wiki/Hardware_description_language
http://en.wikipedia.org/wiki/Hardware_description_language
http://en.wikipedia.org/wiki/Hardware_description_language
http://en.wikipedia.org/wiki/Hardware_description_language
http://en.wikipedia.org/wiki/Electronics
http://en.wikipedia.org/wiki/Electronics

Synthesis

Drivers

• A driver is a data type which can drive a load.

• Basically, in a physical circuit, a driver
would be anything that electrons can
move through

• Two types of Drivers

• The first type of driver – one that can store a
value example flipflop.

• It is called a “reg” in Verilog (short for
"register")

• The second data type is one can not store
value, but connects two points e.g. wire.

• It is called a “wire”

Modules

 Look at the counter block in the picture

• we can see that it has got a name (“4029")

• Also input/output ports (4 bit output and 1
bit clock)

Defining Modules

• module <specify type>(< port list >)

• module 4029 (clk,out,reset,enable);

 or

• module 4029 (clk,a,b,c,d,reset,enable);

Input and ouput

input clk; input clk;

input reset; or input reset;

input enable; input enable;

output a,b,c,d; output [3:0] out;

Driver type

wire clk; wire clk;

wire reset; or wire reset;

wire enable; wire enable;

reg a,b,c,d; reg [3:0] out;

Summary

• We learnt how a block/module is defined in
Verilog.

• We learnt how to define ports and port
directions.

• We learnt how to declare vector/scalar ports.

Operators

• Similar to C

 Operator Type Operator Symbol Operation Performed

Arithmetic * Multiply

/ Division

+ Add

- Subtract

% Modulus

+ Unary plus

- Unary minus

Logical ! Logical negation

&& Logical and

|| Logical or

Relational > Greater than

< Less than

>= Greater than or equal

<= Less than or equal

Equality == Equality

!= inequality

Reduction ~ Bitwise negation

~& nand

| or

~| nor

^ xor

^~ xnor

~^ xnor

• Note that the ++ and -- operators are
not supported in Verilog

Shift >> Right shift

<< Left shift

Concatenation { } Concatenation

Conditional ? conditional

Control Statements

• if, else, repeat, while, for, case

• looks exactly like C

• Difference :
» { begin

» } end

» endcase

• begin and end act like curly braces in
C/C++

If else

if (enable == 1'b1) begin
data = 10; //Decimal assigned
address = 16'hDEAD; // Hexadecimal
end
else begin
enable = 1'b1; // Binary
data = 32'b0;
end

case(address)
 0 : $display (“hi  ”);
 1 : $display (“i am smart  ");
 2 : $display (“electronics club");
default : $display (“its easy");
endcase

While

while (free_time) begin
$display ("I have lots of free time");
end

What’s New Then ???

• Always Block

• Initial Block

• Assign

• Blocking vs Non-Blocking

Always

• Always block

• All blocks marked always will run
simultaneously

• You can have two or more always blocks in a
program going at the same time

• The @ symbol after reserved word ' always',
indicates that the block will be triggered "at"
the condition in parenthesis after symbol @

Note: can not drive wire data type, but can
drive reg and integer data types

always @ (a or b or sel) // 2 * 1 MUX
begin
 y <= 0;
 if (sel == 0) begin
 y <= a;
end
else begin
 y <= b;
 end
end

Initial Block

• An initial block is executed only once when
simulation starts

• This is useful in writing test benches

• If we have multiple initial blocks, then all of
them are executed at the beginning of
simulation

initial begin
clk <= 0;
reset <= 0;
req_0 <= 0;
req_1 <= 0;
end

Summary

• While, if-else, case(switch) statements are the
same as in C language

• If-else and case statements require all the
cases to be covered for combinational logic

• For-loop is the same as in C, but no ++ and --
operators

Program

• Gates

• Counter

My_gate1

module my_and1 (a,b,out)

input a;

input b;

output out;

wire a;

wire b;

wire out;

My_and2

module my_and2 (a,b,out)

input [4:0] a;

input [4:0] b;

output [4:0] out;

wire [4:0] a;

wire [4:0] b;

wire [4:0] out;

Counter

module my_counter1 (clk, reset,enable,out);
input clk;
input reset;
input enable;
ouput [4:0] out;
wire clk;
wire reset;
wire enable;
reg [4:0] out ;

Whats the difference ?

my_and1 is a bit and gate

my_and2 is a 4 bit and gate

done with the module declaration,port list,
driver type

