
Introduction to
FPGA
AVI SINGH

Prerequisites
 Digital Circuit Design - Logic Gates, FlipFlops, Counters, Mux-
Demux

 Familiarity with a procedural programming language like C

Logic Gates

Circuits using Logic Gates

A little more Complication

Flip Flops

Counters

Microprocessors
 Made up of several smaller blocks, as discussed previously.

 Can contain hundreds of millions of gates.

 For Example: Intel i7 ~ 731m gates!

Our Dilemma
For better performing computer, we need processors with a large
number of gates.

But, how do we design with so many gates?

Do we ‘draw’ these circuits? Too tedious!

HDLs to the Rescue
 Hardware Description Languages (HDLs)

Allow you to ‘write’ down hardware.

 How? We will see.

Some of the popular HDLs: Verilog (mainly in the US), VHDL

Example: A Tri-State Buffer

module tri_buf
(a,b,enable);
input a; output b;
input enable;
wire b;
assign b = (enable) ? a :
1'bz;
endmodule

How HDLs help you get the
circuit

Where do FPGAs come in the
picture?
 FPGA stands for Field Programmable Gate Arrays

 You can think of it as drawing board made out of silicon: you can
implement any digital circuit on it.

 An HDL code after synthesis can be uploaded to the FPGA, and
we can test our design in the real world, before going to
production with it.

How does it beat a
microcontroller?
Parallel processing.

Digital Circuits are way faster than algorithms running on a CPU.

User configurable input/output pins: You can have dozens of
external interrupts (or internal interrupts), have as many UART or
SPI ports as you want.

You can implement a processor on an FPGA, add external
memory and few other peripherals, and you have a brand new
micro-controller of your own, which can even run software.

Reconfigurable Logic Blocks

Coding in Verilog
 Consists of various building blocks called Modules

 Communication between a module and its
environment is achieved by using Ports

 Ports are of three types: input, output, inout

Module
 A “Black Box” in Verilog with inputs, outputs and internal logic
working.

 So, a module can be used to implement a counter.

 A module is defined as module <specific type>(<port list>);

4029 Counter

 One Input port for CLK

 Four binary output ports

 At every rising edge of clock, increment output by 1

Declaring Module
 Way 1:

module 4029(clk, a, b, c, d, reset, enable);

//Assuming two more input pins, reset and

//enable with their corresponding functioning

 Way 2:

 module 4029(clk, out, reset, enable);

What is the difference in the two?

Declaring Ports
 Way 1:

input clk;

input reset;

input enable;

output a,b,c,d;

 Way 2:

input clk;

input reset;

input enable;

output [3:0] out;

Types of Ports
 We need drivers for this module in order to interact with other
modules

 Driver is a way of defining something which can drive a load

 Two types of drivers:
◦ Can store a value (for example, flip-flop)

◦ Cannot store a value, but connects two points (for example, a wire)

 In Verilog, a driver which can store a value is called reg and the one
which cannot is called wire

Drivers for 4029 modules
 Ports defined as wires?

◦ clk

◦ reset

◦ enable

 We do not need to stores the values of these ports in our logical
block.

 Ports defined as reg?
◦ a,b,c,d

◦ out

 We need to store them so that we could modify their values when
required.

Defining drivers for 4029
 Way 1:

wire clk;
wire reset;
wire enable;
reg a,b.c,d;

 Way 2:
wire clk;
wire reset;
wire enable;
reg [3:0] out;

Complete definition of module
 module 4029(clk, out, reset, enable);

input wire clk;
input wire reset;
input wire enable;
output reg [3:0] out;

endmodule

Wire Vs Reg
 reg can store a value, wire simply connects

 Most of the times, inputs are wire and outputs are reg

 Output of flip flop – wire or reg ?

 Output of XOR gate – wire or reg ?

 Output of multiplexer – wire or reg ?

What now?
 We have seen how to define the outer structure of the modules
we will use.

 Time to define the internal structure and functioning?

Operational and Conditional
Statements

 All the arithmetic as well as logical operators in Verilog are
similar to C, except ++ and –- which are not available in
Verilog.

 Conditional statements are also similar to C with following
modifications:
◦ { is replaced by begin.

◦ } is replaced by end.

Combinatorial Circuits
 Combinational circuits are acyclic interconnections of gates.

◦ And, Or, Not, Xor, Nand, Nor ……

◦ Multiplexers, Decoders, Encoders ….

◦ Adders, Multipliers ….

 OUTPUT DEPENDS ON THE PRESENT INPUT ONLY.

 How are these gates, muxs etc. abstracted in Verilog?
◦ Gates, Add, Multiply … : by simple operators like in C

◦ Multiplexers … : by control statements like if-else, case, etc.

 Gate level implementation of above high level operators done by Verilog
synthesizer.

Control Statements
 if-else, case :

◦ Exactly like C.

◦ Hardware view: implemented using multiplexers

 for loops, repeat:
◦ – for-loops are synthesizable only if length of iteration is determined

at compile time & finite.

◦ repeat -similar to for loop.

◦ Hardware view: All loops are unrolled during synthesis.

Control Statement Syntax

Assign statements
 Continuous assignment statement.

 Used for modeling only combinational logic.

module BusInverter(input wire A, output wire B);

assign B = ~A;

endmodule

 Basically B is shorted to ~A.

 LHS should have variable of wire type.

Example-1 bit Full Adder
GATE LEVEL DESCRIPTION

module full_adder(

input wire a,

input wire b,

input wire cin,

output wire sum,

output wire carry);

assign sum = a & ~b & ~cin | ~a & b & ~cin |~a & ~b &
cin | a & b & cin;

assign carry = a & b | a & cin | b & cin;

endmodule

BEHAVIORAL DESCRIPTION

module full_adder(

input wire a,

input wire b,

input wire cin,

output wire sum,

output wire carry);

assign { carry, sum } = a+b+cin;

endmodule

Sequential Circuits
 Circuits containing state elements are called sequential circuits

 OUTPUT DEPENDS ON THE PRESENT INPUT AS WELL AS ON ITS
PRESENT STATE.

 The simplest synchronous state element: Edge triggered D Flip Flop

 How do you implement such an element in Verilog?

always @ block
 It is an abstraction provided in Verilog to mainly implement sequential circuits.

 Also used for combinational circuits.

always @(#sensitivity list#)

begin

 ………. //No assign statements inside always@

end

 Execution of always block depends on the sensitivity list.

Sensitivity List
 Run continuously. (mostly used in Test Benches)

always

 Run when any variable changes its value.

always @(*) //for combinational ckts

 Run when the variables `a' or `b' change their value.

always @(a, b)

 Run when a positive edge is detected on CLK.

always @(posedge CLK) //for sequential ckt

initial block
 An initial block is executed only once when simulation starts

 This is useful in writing test benches

 If we have multiple initial blocks, then all of them are executed
at the beginning of simulation

Counter Example
module Counter(

input wire CLK,

output reg [3:0] OUT);

initial

OUT <= 0;

always @(posedge CLK)

OUT <= OUT + 1;

endmodule

Blocking and Non-blocking
statement

 Non-blocking assignments happen in parallel.

always @ (#sensitivity list #) begin

B <= A ;

C <= B ; // (A,B) = (1,2) -> (B,C) = (1,2)

end

 Blocking assignments happen sequentially.

always @ (#sensitivity list #) begin

B = A ;

C = B ; // (A,B) = (1,2) -> (B,C) = (1,1)

end

Points to note
 Use always@(*) block with blocking assignments for
combinational circuits.

 Use always@(posedge clk) block with non- blocking
assignments for sequential combinational circuits.

 Do not mix blocking and non-blocking statements.

Complete 4029 module
module 4029(clk, out, reset, enable);

input wire clk;

input wire reset;

input wire enable;

output reg [3:0] out;

always @(posedge clk)

begin

if (reset == 0 && enable == 0)

begin

out <= out +1;

end

end

// continued to next page

Complete 4029 module
always @(reset or enable)

begin

if (reset == 1’b1)

begin

out <= 0;

end

end

endmodule

How to get started?
 First of all download Xilinx ISE WebPack, with a free licence.

 Create a simple project, and learn to write test benches (or directly create
them on the ISE), and start using the ISim tool.

 Do the ‘Verilog in a Day’ exercises found here
http://www.asic-world.com/
Wire vs Reg
http://inst.eecs.berkeley.edu/~cs150/Documents/Nets.pdf

Check if Mojo boards are available in club.

Go here: http://embeddedmicro.com/tutorials/mojo/

See your code in action!

http://www.asic-world.com/
http://www.asic-world.com/
http://embeddedmicro.com/tutorials/mojo/
http://embeddedmicro.com/tutorials/mojo/
http://embeddedmicro.com/tutorials/mojo/

Takneek 2014
 Prelims:
Objective + Subjective questions

 Finals
Design problem.

	Slide 1
	Prerequisites
	Logic Gates
	Circuits using Logic Gates
	A little more Complication
	Flip Flops
	Counters
	Microprocessors
	Our Dilemma
	HDLs to the Rescue
	Example: A Tri-State Buffer
	How HDLs help you get the circuit
	Where do FPGAs come in the picture?
	How does it beat a microcontroller?
	Reconfigurable Logic Blocks
	Coding in Verilog
	Module
	4029 Counter
	Declaring Module
	Declaring Ports
	Types of Ports
	Drivers for 4029 modules
	Defining drivers for 4029
	Complete definition of module
	Wire Vs Reg
	What now?
	Operational and Conditional Statements
	Combinatorial Circuits
	Control Statements
	Control Statement Syntax
	Assign statements
	Example-1 bit Full Adder
	Sequential Circuits
	always @ block
	Sensitivity List
	initial block
	Counter Example
	Blocking and Non-blocking statement
	Points to note
	Complete 4029 module
	Complete 4029 module
	How to get started?
	Takneek 2014

