

Introduction to Microcontrollers

KEVIN JOSE

SPECIAL THANKS TO: SHIVENDU BHUSHAN SONU AGARWAL

Things to be covered today...

- Embedded System Introduction, Examples
- Microcontrollers basic features
- Input and output from a micro-controller
- Programming a micro-controller
- Arduino

Embedded Systems

- Gadgets and devices
- Self controlled devices
- Contains I/O devices, storage devices and a central 'controller'

Example: Music playe

Snake Game, Electromania 2013

Line Following Bot, Techfest 2014

Micro-Controllers

- ▶ Difference between microcontrollers and microprocessors: Microprocessors are simply processing units which need external peripherals (like RAM, ROM etc) but microcontrollers have do not require external peripherals to function (they have internal RAM, flash memory etc.)
- Out of several available vendors like Atmel, Intel, ARM, Cypress, etc. We will use Atmel ATmega microcontrollers
- Like computers they execute programs. We will use C as the coding language

ATMEGA 8

- ▶ 28 pin IC
- 23 pins for I/O
- 5 pins reserved
- I/O pins divided into 3 groups of 8* pins, called por
- Ports labelled as B, C and D

I/O Registers

- Input / Output is controlled through special variables called "registers"
- Registers are actual hardware memory locations inside the μCs with predefined names and sizes
- Assigning a value to these registers in the program changes the corresponding hardware configuration. And, these values can be altered multiple number of time at any point in the program.
- ▶ There are 3 registers that control the I/O pins: **DDR, PORT and PIN**.
- Each port has it's own registers. Hence, DDRC, PORTC, PINC registers for port C; DDRB, PORTB, PINB for port B and likewise

DDR(Data Direction Register)

- Decides whether the pin is Input or Output
- DDR is an 8 bit register. Each bit corresponds to a particular pin on the associated port
- If a bit on the DDR register is 0, then the corresponding pin on the associated port is set as input
- lacktriangle Similarly, if the bit is $oldsymbol{1}$, then the pin is set as output
- If a pin is configured as input, then it has some floating voltage unless an external voltage is applied
- For an output pin, the voltage is fixed to a particular value

Setting Register Values

MSB of DDRB corresponds to the pin A7

• If DDRA = 0b10010110, then:

PORT Register

- ▶ PORT is also an 8 bit register. The bits on the PORT register correspond to the pins of the associated port in the same manner as in the case of the DDR register.
- PORT is used to set the output value.
- ▶ If the pin is set as output, then a PORT value of 1 will set voltage at that pin to 5V, and PORT value 0 sets the voltage to 0V.
- ► If the pin is configured as an **input**, PORT value serves the purpose of **pull up** or **pull down**.

PIN Register

- ▶ PIN is a register whose value can be read, but cannot be changed inside the program.
- ▶ It gives the value of the actual voltage at a particular pin. 1, if the value at the required pin is 5V and 0 for 0V.

Summary

DDR = 0		DDR = 1	
PORT = 0	PORT = 1	PORT = 0	PORT = 1
Pin is	Pin is	Pin is	Pin is
input. If	input. If	output,	output,
unconnec	unconnec	value is	value is
ted, PIN	ted, PIN	0. PIN is	5V. PIN is
is 0.	is 1.	always	always
		equal to	equal to
		PORT	PORT

Some C concepts

- | is bitwise OR. Eg. 10100111 | 11000101 = 11100111
- ▶ & is bitwise AND. Eg. 10100111 & 11000101 = 10000101
- ► ~ is bitwise NOT. Eg. ~10100110 = 01011001
- << is shift left. >> is shift right

Simplest C program for a micro-controller

```
int main(){
  return 0;
}
```

Example Program 1

```
#include <avr/io.h>
int main(){
DDRA = 0b111111111; // or 255 or 0xFF
while(1){
PORTA = PINC;
}
return 0;
}
```

Example Program 2

```
#include <avr/io.h>
#include <util/delay.h>
int main(){
DDRA = 0xFF;
while(1){
PORTA = 0xAA;
_delay_ms(1000);
PORTA = 0x55;
_delay_ms(1000);
return 0;
```

How to Program MCU?

Extreme Burner

#Problem: What kind of files MCU can execute?
#Problem: How to transfer that file to MCU?

Arduino

Further references

- Electronics Club database http://students.iitk.ac.in/eclub/database.php
- Official Arduino Reference http://arduino.cc/en/Reference/HomePage
- eXtreme Electronics AVR tutorials http://extremeelectronics.co.in/category/avr-tutorials/