
Anurag Dwivedi

MCU

MCU

A small computer
integrated in a

single IC

MCU

A small computer
integrated in a

single IC

Has I/O pins, RAM
and Memory

Software Used

CVAvr Software Used

CVAvr Software Used

 Editor

CVAvr Software Used

CVAvr Software Used

 Compiler

Software Used

Avr-Studio Software Used

Avr-Studio Software Used To program the code
into the MCU

MCU Coding

MCU Coding

The data direction
is set through DDR

Register

MCU Coding

The data direction
is set through DDR

Register

MCU Coding

MCU Coding

I/O ports are
accessed by PORT
and PIN Registers

MCU Coding

I/O ports are
accessed by PORT
and PIN Registers

.

.

.
While(1){
 PORTA.1 = 1; //sets the pin to 5V
 PORTA.1 = 0; // sets the pin to 0V

 X = PINA.0; //reads the value of pin
 // and copies it to X
}
.
.
.

 Registers are actual hardware memory
locations inside the μC.

 What do we mean by this??

 Consider a 8-bit long register. Each bit of the
register can be realized as a flip-flop.

 Ex. PORTX is a register.

 When you set the value of PORTA = 0X01,
you physically set the corresponding flip-flop
a value of +5 Volts.

 A Timer is usually a 8-bit register.

 It starts with

 0

 .

 .

 .

 .

 255

0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1

 8-bit register.
 Values starts from 0 and goes up to 255.

 8-bit register.
 Values starts from 0 and goes up to 255.
 Timer value increases by 1,after each period.

t = 0 T 0 0 0 0 0 0 0 0

 8-bit register.
 Values starts from 0 and goes up to 255.
 Timer value increases by 1,after each period.

t = 0 T 0 0 0 0 0 0 0 0 t = 1 T 0 0 0 0 0 0 0 1

 8-bit register.
 Values starts from 0 and goes up to 255.
 Timer value increases by 1,after each period.

t = 0 T 0 0 0 0 0 0 0 0 t = 1 T 0 0 0 0 0 0 0 1 t = 2 T 0 0 0 0 0 0 1 0

 8-bit register.
 Values starts from 0 and goes up to 255.
 Timer value increases by 1,after each period.

t = 0 T 0 0 0 0 0 0 0 0 t = 1 T 0 0 0 0 0 0 0 1 t = 2 T 0 0 0 0 0 0 1 0 t = 255 T 1 1 1 1 1 1 1 1

 8-bit register.
 Values starts from 0 and goes up to 255.
 Timer value increases by 1,after each period.

 When the timer reaches its maximum value,
in the next cycle, its value becomes 0 again
and the process repeats itself.

t = 0 T 0 0 0 0 0 0 0 0 t = 1 T 0 0 0 0 0 0 0 1 t = 2 T 0 0 0 0 0 0 1 0 t = 255 T 1 1 1 1 1 1 1 1

 8-bit register.
 Values starts from 0 and goes up to 255.
 Timer value increases by 1,after each period.

 When the timer reaches its maximum value,
in the next cycle, its value becomes 0 again
and the process repeats itself.

t = 0 T 0 0 0 0 0 0 0 0 t = 1 T 0 0 0 0 0 0 0 1 t = 2 T 0 0 0 0 0 0 1 0 t = 255 T 1 1 1 1 1 1 1 1 t = 256 T 0 0 0 0 0 0 0 0

 8-bit register.
 Values starts from 0 and goes up to 255.
 Timer value increases by 1,after each period.

 When the timer reaches its maximum value,
in the next cycle, its value becomes 0 again
and the process repeats itself.

 The timer frequency can be factors of the
base frequency of the MCU.

t = 0 T 0 0 0 0 0 0 0 0 t = 1 T 0 0 0 0 0 0 0 1 t = 2 T 0 0 0 0 0 0 1 0 t = 255 T 1 1 1 1 1 1 1 1 t = 256 T 0 0 0 0 0 0 0 0

 8-bit register.
 Values starts from 0 and goes up to 255.
 Timer value increases by 1,after each period.

 When the timer reaches its maximum value,
in the next cycle, its value becomes 0 again
and the process repeats itself.

 The timer frequency can be factors of the
base frequency of the MCU.

 This process is independent of the CPU.

t = 0 T 0 0 0 0 0 0 0 0 t = 1 T 0 0 0 0 0 0 0 1 t = 2 T 0 0 0 0 0 0 1 0 t = 255 T 1 1 1 1 1 1 1 1 t = 256 T 0 0 0 0 0 0 0 0

 Maximum value of timer is n and
clock period is t, then:

 1. Timer period = t

 2. Timer cycle period = (𝑛+1)×𝑡

 3. Frequency of timer (f) = 1/𝑡

 4. Frequency of timer cycle = 1/(𝑛+1)×𝑡

 Registers

 Timers

 Interrupts means causing a break in a
continuing process.

 Suppose you need to check for a condition A
while running another condition B

 Simple Solution..

 Simple Solution..

 while(1){
 ---- -> if (Event A == true)
 ---- -> // print event A has occurred

 ---- -> Event B

 }

 Simple Solution..

 while(1){
 ---- -> if (Event A == true)
 ---- -> // print event A has occurred

 ---- -> Event B

 }
 Do you see the problem in this approach??

 Simple Solution..

 while(1){
 ---- -> if (Event A == true)
 ---- -> // print event A has occurred

 ---- -> Event B

 ---- -> Suppose Event A happens here

 }

.

.
while(1){

EVENT B

}
.

.

.
while(1){

EVENT B

}
.

.

.
while(1){

EVENT B

}
.

When event
A occurs ,

call an
interrupt

.

.
while(1){

EVENT B

}
.

handleA(){
.

}

When event
A occurs ,

call an
interrupt Done.

.

.
while(1){

EVENT B

}
.

handleA(){
.

}

.

.
while(1){

EVENT B

}
.

handleA(){
.
// print event A has occurred
}

 Interrupts are special events that can
“interrupt” the normal flow of a program.

 Whenever an Interrupt is called, the processor
stops the normal program, handles the
interrupt, and then resumes its normal work.

 There are two types of interrupts:

 External and Internal

 The controller monitors the input at the
special pins INT0 and INT1, whenever
external interrupt is set on.

 We can configure the program to call an
external interrupt whenever any of the
following conditions are met.

Rising Edge

Falling Edge

Any change

Low level

 Registers

 Timers

 Interrupts

 External Interrupts

 The internal interrupts are called when
different specific conditions are met by the
timer value.

 This brings us to the next topic..

 Timers can generate certain interrupts: two,
to be precise.

 These are called OVERFLOW interrupt and
COMPARE MATCH interrupt.

 An overflow interrupt is generated when the
timer exceeds its maximum value and resets
to 0

 The interrupt may or may not have a handler.
In either case, the timer continues to run;
remember: timers are independent of the
CPU.

 Suppose a timer of maximum value n has a
time period t (also called as clock period).

 Then :

 1. Timer cycle frequency = 1/(𝑛+1)×𝑡

 2. OVERFLOW interrupt frequency = 1/(𝑛+1)×𝑡

 If OVERFLOW interrupt is enabled, then an
interrupt is generated in every cycle.

 A compare match interrupt is called when the
value of the timer equals a specific value, set
by the user.

 This value is set by setting the value of OCR
register.

 Before incrementing, the value of the timer is
compared to OCR. If the two are equal, a
COMPARE MATCH interrupt is generated

 Suppose a timer of maximum value n has a time
period t (also called as clock period).

 Then :

 1. Timer cycle frequency = 1/(𝑛+1)×𝑡

 2. COMPARE MATCH interrupt frequency = 1/(𝑛
+1)×𝑡

 If COMPARE MATCH interrupt is enabled, then an
interrupt is generated in every cycle.

 Registers

 Timers

 Interrupts

 External Interrupts

 Internal Interrupts

 -- Overflow Interrupt

 -- Compare Match Interrupt

 A timer works in three modes: Normal, CTC
and PWM.

 All three modes differ in the response of the
controller to the interrupts generated.

 The timer mode used so far in this
presentation is normal mode.

 Standard mode: Timer starts at 0, goes to
maximum value and then resets itself.

 OVERFLOW and COMPARE MATCH interrupts
generated as normal.

 Known as Clear Timer on Compare.

 As evident by the name, the timer starts at 0
as usual, but instead of resetting after
maximum value, it resets after reaching value
specified in OCR register.

 Compare match interrupt if enabled will be
generated but not overflow interrupt (Why?)

 If clock time period is t:

 1. Timer cycle time period = (𝑂𝐶𝑅+1)×𝑡

 2. Frequency = 1/(𝑂𝐶𝑅+1)×𝑡

 With the use of CTC Mode we can
theoretically generate any frequency up to 8
MHz.

 Example of 1 Hz generation.

 Registers
 Timers
 Interrupts
 External Interrupts
 Internal Interrupts

 -- Overflow Interrupt
 -- Compare Match Interrupt

 Timer Modes
 -- Normal Mode
 -- CTC (Clear on Timer Compare) Mode

 Known as Pulse Width Modulation

 Simple method of obtaining analog output of
any value between 0 and 5V.

 How is it achieved??

 Suppose we need 3V for our device at a
specified pin.

 We supply 5V on it for (3/5)* 100 % = 60% of
the time period and 0V for the remaining
time period

 The average voltage at the pin for a time
period becomes 3V

 If this step is repeated very fast (T is very
small), then the output behaves as a analog
signal of 3V.

Vout = 3.75 V Vout = 0.625 V

 The PWM behaves in a similar way.

 The PWM behaves in a similar way.

 This “analog” value is obtained using timers.

 A specific pin is set as output. When the timer
reaches 0, the voltage of the pin is set to 5V.

 The PWM behaves in a similar way.

 This “analog” value is obtained using timers.

 A specific pin is set as output. When the timer
reaches 0, the voltage of the pin is set to 5V.

 The PWM behaves in a similar way.

 This “analog” value is obtained using timers.

 A specific pin is set as output. When the timer
reaches 0, the voltage of the pin is set to 5V.

 The PWM behaves in a similar way.

 This “analog” value is obtained using timers.

 A specific pin is set as output. When the timer
reaches 0, the voltage of the pin is set to 5V.

 When the timer reaches the value specified
by OCR, on the next clock, the pin voltage is
set to 0 until the timer resets itself.

 The PWM behaves in a similar way.

 This “analog” value is obtained using timers.

 A specific pin is set as output. When the timer
reaches 0, the voltage of the pin is set to 5V.

 When the timer reaches the value specified
by OCR, on the next clock, the pin voltage is
set to 0 until the timer resets itself.

 If clock time period is t and maximum timer
value is n:

 1.Timer cycle time period =(𝑛+1)×𝑡

 2.Frequency =1/(𝑛+1)×𝑡

 3.Duty cycle =[𝑂𝐶𝑅/(𝑛
+1)]×100%

 4.Output voltage =[𝑂𝐶𝑅/(𝑛+1)]×5𝑉

 COMPARE MATCH interrupt and OVERFLOW
interrupt both will work properly.

 Demo.

 Registers

 Timers

 Interrupts

 External Interrupts

 Internal Interrupts

 -- Overflow Interrupt

 -- Compare Match Interrupt

 Timer Modes

 -- Normal Mode

 -- CTC (Clear on Timer Compare) Mode

 -- PWM (Pulse Width Modulation) Mode

