Timers and Interrupts

Shivendu Bhushan

Recap

A small
computer

integrated
in a
single IC

Software A\VA

used Studio

Registers

Timers

* 8-bit register.

* Values starts from 0 and goes up to 255. Timer value
increases by 1,after each period.

|
256T

* When the timer reaches its maximum value, in the next
cycle, its value becomes 0 again and the process repeats
itself.

* The timer frequency can be factors of the base frequency
of the MCU.

* This process is independent of the CPU.

Simple Statistics

* Maximum value of timer is n and clock period is t, then:
1. Timer period =t
2. Timer cycle period = (n+1)xt
3. Frequency of timer (f) = 1/¢
4. Frequency of timer cycle = 1/(n+1)xt

Suppose you need to check for a condition A while
running another condition B

while(1){
---- -> if (Event A == true)
---- -> /[print event A has occurred

-----> Event B

-~ -> Suppose Event A happens
" here

}

Do you see the problem in this approach??

A better Solution: Interrupt

* Interrupts means causing a break in a continuing process.
* We execute the Event B in a normal while(1) loop.

while(1){
EVENT B
}

* We will consider the occurrence of event A as an interrupt

;Nhile(l){

When event
--- A occurs ,
EVENT B call an

interrupt

}

.handIeA(){

---// print event A has occurred

}

We execute the required code in handler
of event A

More on Interrupts

* Interrupts are special events that can “interrupt” the
normal flow of a program.

* Whenever an Interrupt is called, the processor stops the
normal program, handles the interrupt, and then
resumes its normal work.

* There are two types of interrupts:
1. External
2. Internal

External Interrupts

* The controller monitors the input at the special pins
INTO and INT1, whenever external interrupt is set on.

* We can configure the program to call an external
interrupt whenever any of the following conditions are
met.

* Rising Edge ‘

* Falling Edge M
» Any change c
* Low level

Internal Interrupts

* The internal interrupts are called when different specific
conditions are met by the timer value.

* Timers can generate certain interrupts: two, to be
precise.

* These are called OVERFLOW interrupt and COMPARE
MATCH interrupt.

Overflow interrupts

* An overflow interrupt is generated when the timer exceeds its
maximum value and resets to O.

* The interrupt may or may not have a handler. In either case,
the timer continues to run; remember: timers are
iIndependent of the CPU.

* Suppose a timer of maximum value n has a time period t
(also called as clock period).

* Then :
1. Timer cycle frequency = 1/(n+1)xt

2. OVERFLOW interrupt frequency = 1/(n+1)x¢

* If OVERFLOW interrupt is enabled, then an interrupt is
generated in every cycle.

Compare Match Interrupt

* A compare match interrupt is called when the value of the timer
equals a specific value, set by the user.

* This value is set by setting the value of OCR register.

* Before incrementing, the value of the timer is compared to OCR.
If the two are equal, a COMPARE MATCH interrupt is generated.

* Suppose a timer of maximum value n has a time period t (also
called as clock period).

Then :
1. Timer cycle frequency = 1/(n+1)x¢

2. COMPARE MATCH interrupt frequency = 1/(n+1)xt

* If COMPARE MATCH interrupt is enabled, then an interrupt is
generated in every cycle.

Interrupts: Overflow and
Compare Match

MAX

OCR

OVERFLOW OVERFLOW

v

COMPARE
MATCH

COMPARE
MATCH

Timer modes

A timer works in three modes: Normal, CTC and PWM.

* All three modes differ in the response of the controller
to the interrupts generated.

Normal Mode

* Standard mode: Timer starts at 0, goes to maximum
value and then resets itself.

* OVERFLOW and COMPARE MATCH interrupts generated
as normal.

CTC Mode

* Known as Clear Timer on Compare.

* As evident by the name, the timer starts at 0 as usual,
but instead of resetting after maximum value, it resets
after reaching value specified in OCR register.

 Compare match interrupt if enabled will be generated
but not overflow interrupt (Why?)

CTC mode statistics

* If clock time period is t:
1. Timer cycle time period = (OCR+1)xt
2. Frequency = 1/(OCR+1)xt

* With the use of CTC Mode we can theoretically
generate any frequency up to 8 MHz.

* Example : 1 Hz generation.

PWM mode

* Known as Pulse Width Modulation

* Simple method of obtaining analog output of any value
between 0 and 5V.

* Suppose we need 3V for our device at a specified pin.
We supply 5V on it for (3/5)* 100 % = 60% of the time
period and 0V for the remaining time period.

* The average voltage at the pin for a time period
becomes 3V

* If this step is repeated very fast (T is very small), then
the output behaves as a analog signal of 3V.

Volis

O — N W B O

Ton

Tnﬂ'

L

Time Period

3.75V

Volis

O — N W B O

Time Period

0.625V

PWM mode

* This “analog” value is obtained using timers.

* A specific pin is set as output. When the timer reaches
0, the voltage of the pin is set to 5V.

* When the timer reaches the value specified by OCR, on
the next clock, the pin voltage is set to O until the timer

res
254

OCRD
= 64

D:./' yd v

-

5\ Feriod

OCO PIN

oV

PWM mode Statistics

* If clock time period is t and maximum timer
value is n:
1.Timer cycle time period =(n+1)xt
2.Frequency =1/(n+1)x¢
3.Duty cycle =[(OCR+1)/(n+1)]x100%

4.Output voltage =[(OCR+1)/(n+1)]X5V

* COMPARE MATCH interrupt and OVERFLOW interrupt
both will work properly.

DS

(:':)

o

00 YOU HAVE A
“STIONS FOR ME!

Il.i
-~ =<

@

	Slide 1
	Recap
	Slide 3
	Slide 4
	Timers
	Simple Statistics
	Slide 7
	A better Solution: Interrupt
	Interrupts
	More on Interrupts
	External Interrupts
	Internal Interrupts
	Overflow interrupts
	Compare Match Interrupt
	Interrupts: Overflow and Compare Match
	Timer modes
	Normal Mode
	CTC Mode
	CTC mode statistics
	PWM mode
	Slide 21
	PWM mode
	PWM mode Statistics
	Slide 24

