
Chirag Sangani 06-01-2011

Digital Logic Design using Verilog
and FPGA devices

Part 2

An Introductory Lecture Series

By

Chirag Sangani

Chirag Sangani 06-01-2011

A Small Recap

• Verilog allows us to design circuits, FPGAs
allow us to test these circuits in real-time.

• The basic unit in a Verilog code is a module. A
module consists of I/O through wires or
registers.

• An always block allows us to implement
sequential circuits as well as complex
combinatorial circuits. It enables behavior-
based programming.

Chirag Sangani 06-01-2011

Conditional Statements
module UpDownCounter(
 input wire CLK,
 input wire DIR,
 output reg [7:0] COUNT);

initial
 COUNT <= 8’b0;

always @(posedge CLK)
 if (DIR == 1)
 COUNT <= COUNT + 1;
 else
 COUNT <= COUNT – 1;

endmodule

Chirag Sangani 06-01-2011

Conditional Statements

• Alternatively:
module UpDownCounter2(
 input wire CLK,
 input wire DIR,
 output reg [7:0] COUNT);

initial
 COUNT <= 8’b0;

always @(posedge CLK)
 COUNT <= COUNT + ((DIR==1) ? 1 : –1);

endmodule

Chirag Sangani 06-01-2011

Parameterized Modules

• A generalized type of module.

• Can be instantiated to any value of parameter.

• Useful in large circuits.

Chirag Sangani 06-01-2011

Example: N-bit adder

module AdderN #(parameter N = 4) (
 input wire [N-1:0] IN1,
 input wire [N-1:0] IN2,
 output reg [N-1:0] OUT);

always @(*)
 OUT <= IN1 + IN2;

endmodule

Chirag Sangani 06-01-2011

Modular Circuits

• A modular circuit is one where sub-modules
are initialized with interconnects to form even
a larger circuit.

• Each sub-module resides in its own Verilog file
(extension .v). A sub-module may use another
sub-module in its circuit.

• The top-level module has to be indicated to
the synthesizer at the time of synthesis.

Chirag Sangani 06-01-2011

An Example Modular Circuit
module MultiSevenSeg (
 input wire [3:0] INP,
 input wire TYPE,
 output reg [6:0] OUT);

wire [6:0] DecToInv;
wire [6:0] INVERTOUT;

SevenSegDec DECODER (
 .inp(INP),
 .out(DecToInv));

BusInverter #(.N(7)) INVERTER (
 .A(DecToInv),
 .B(INVERTOUT));

always @(*)
 OUT <= (TYPE == 1) ?
DecToInv : INVERTOUT;

endmodule

module SevenSegDec (
 input wire [3:0] inp,
 output reg [6:0] out
);

module BusInverter (
 input wire [N-1:0] A,
 output wire [N-1:0] B
);

Chirag Sangani 06-01-2011

Why Are Modular Circuits Better?

Chirag Sangani 06-01-2011

Why Are Modular Circuits Better?

A two-stage pipelined SDLX Processor
Source: C. Sangani, A. Kasina (2)

Chirag Sangani 06-01-2011

Sequential Circuits

• Time-dependent circuits: their state is
determined not just by the input but also by
current state.

• Their behavior may vary for the same input at
different times.

• They may exhibit output without any input.

Chirag Sangani 06-01-2011

LCD Driver

• Control of 16*2 character LCD display.

• Control interface consists of a 7 bit bus: 4 bits
data and 3 bits instructions.

• To control the LCD, the data bits and the
control bits have to be set, and the LCD_E bit
has to be strobed at a specified maximum
frequency.

Chirag Sangani 06-01-2011

LCD Driver

module LCDDriver(
 input wire CLK,
 output reg[7:0] LCDCONTROL);

reg [25:0] FREQGEN;

always @(posedge CLK)
begin
 FREQGEN <= FREQGEN + 1;
 case(FREQGEN[25:17])
 0: LCDCONTROL <= XYZ;
 1: LCDCONTROL <= ABC;
 endcase
end

endmodule

Chirag Sangani 06-01-2011

128-BIT AES ENCRYPTION
FPGA Design Challenge Problem Statement

Chirag Sangani 06-01-2011

Terminology

• Plaintext: Input data to the encryption block.

• Ciphertext: Encrypted output by encryption
block.

• Key: A secret binary number known by the
two communicating parties

Chirag Sangani 06-01-2011

Advanced Encryption System

• A symmetric-key encryption standard.

• Key size: 128 bit.

• Plaintext block size: 128 bit.

Chirag Sangani 06-01-2011

High-Level Description of the
Algorithm

• KeyExpansion — round keys are derived from the cipher key using
Rijndael's key schedule

• Initial Round
– AddRoundKey — each byte of the state is combined with the round key using

bitwise XOR

• Rounds
– SubBytes — a non-linear substitution step where each byte is replaced with

another according to a lookup table.
– ShiftRows — a transposition step where each row of the state is shifted

cyclically a certain number of steps.
– MixColumns — a mixing operation which operates on the columns of the

state, combining the four bytes in each column.
– AddRoundKey

• Final Round (no MixColumns)
– SubBytes
– ShiftRows
– AddRoundKey

Chirag Sangani 06-01-2011

Requirements

• Develop a module that performs 128-bit AES
encryption.

• The module must be completely self-written
and completely self-sufficient.

• Input (key and plaintext) and output
(ciphertext) must be through I/O or RAM.

Chirag Sangani 06-01-2011

References

1. R. Haskell, D. Hanna: “Introduction to Digital
Design Using Digilent FPGA Boards ─ Block
Diagram / Verilog Examples”; available at
http://www.digilentinc.com/Data/Textbooks/Int
ro_to_Digital_Design-Digilent-
Verilog_Online.pdf

2. C. Sangani, A. Kasina: “Digital Design Using
Verilog and FPGAs: An Experiment Manual”;
available at
http://www.chiragsangani.com/projects/electro
nics/FPGADesignManual

http://www.digilentinc.com/Data/Textbooks/Intro_to_Digital_Design-Digilent-Verilog_Online.pdf
http://www.digilentinc.com/Data/Textbooks/Intro_to_Digital_Design-Digilent-Verilog_Online.pdf
http://www.digilentinc.com/Data/Textbooks/Intro_to_Digital_Design-Digilent-Verilog_Online.pdf
http://www.digilentinc.com/Data/Textbooks/Intro_to_Digital_Design-Digilent-Verilog_Online.pdf
http://www.digilentinc.com/Data/Textbooks/Intro_to_Digital_Design-Digilent-Verilog_Online.pdf
http://www.digilentinc.com/Data/Textbooks/Intro_to_Digital_Design-Digilent-Verilog_Online.pdf
http://www.chiragsangani.com/projects/electronics/FPGADesignManual
http://www.chiragsangani.com/projects/electronics/FPGADesignManual

Chirag Sangani 06-01-2011

References

3. http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
This document outlines every detail of the AES and is considered
as the final reference. You are advised to go through this
document thoroughly for understanding the problem statement.

4. http://en.wikipedia.org/wiki/Advanced_Encryption_Standard
A learner-friendly description of the problem statement. Please be
advised that this is not the final reference and in case of any
conflict, the details mentioned in reference 3 shall be considered
as final.

5. http://www.movable-type.co.uk/scripts/aes.js
A javascript implementation of the AES scheme. This resource will
serve useful as a reference pseudo-code. You are advised to
ensure that your final implementation stays true to the original
standard as described in reference 3.

http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/fi ps/fi ps197/fi ps-197.pdf
http://en.wikipedia.org/wiki/Advanced_Encryption_Standard
http://en.wikipedia.org/wiki/Advanced_Encryption_Standard
http://en.wikipedia.org/wiki/Advanced_Encryption_Standard
http://www.movable-type.co.uk/scripts/aes.js
http://www.movable-type.co.uk/scripts/aes.js
http://www.movable-type.co.uk/scripts/aes.js
http://www.movable-type.co.uk/scripts/aes.js
http://www.movable-type.co.uk/scripts/aes.js

