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A Small Recap 

• Verilog allows us to design circuits, FPGAs 
allow us to test these circuits in real-time. 

• The basic unit in a Verilog code is a module. A 
module consists of I/O through wires or 
registers. 

• An always block allows us to implement 
sequential circuits as well as complex 
combinatorial circuits. It enables behavior-
based programming. 
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Conditional Statements 
module UpDownCounter( 
 input wire CLK, 
 input wire DIR, 
 output reg [7:0] COUNT); 
 
initial 
 COUNT <= 8’b0; 
 
always @(posedge CLK) 
 if (DIR == 1) 
  COUNT <= COUNT + 1; 
 else 
  COUNT <= COUNT – 1; 
 
endmodule 
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Conditional Statements 

• Alternatively: 
module UpDownCounter2( 
 input wire CLK, 
 input wire DIR, 
 output reg [7:0] COUNT); 
 
initial 
 COUNT <= 8’b0; 
 
always @(posedge CLK) 
 COUNT <= COUNT + ((DIR==1) ? 1 : –1); 
 
endmodule 
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Parameterized Modules 

• A generalized type of module. 

• Can be instantiated to any value of parameter. 

• Useful in large circuits. 



Chirag Sangani 06-01-2011 

Example: N-bit adder 

module AdderN #(parameter N = 4) ( 
 input wire [N-1:0] IN1, 
 input wire [N-1:0] IN2, 
 output reg [N-1:0] OUT); 
 
always @(*) 
 OUT <= IN1 + IN2; 
 
endmodule 
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Modular Circuits 

• A modular circuit is one where sub-modules 
are initialized with interconnects to form even 
a larger circuit. 

• Each sub-module resides in its own Verilog file 
(extension .v). A sub-module may use another 
sub-module in its circuit. 

• The top-level module has to be indicated to 
the synthesizer at the time of synthesis. 
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An Example Modular Circuit 
module MultiSevenSeg ( 
 input wire [3:0] INP, 
 input wire TYPE, 
 output reg [6:0] OUT); 
 
wire [6:0] DecToInv; 
wire [6:0] INVERTOUT; 
 
SevenSegDec DECODER ( 
 .inp(INP), 
 .out(DecToInv)); 
 
BusInverter #(.N(7)) INVERTER ( 
 .A(DecToInv), 
 .B(INVERTOUT)); 
 
always @(*) 
 OUT <= (TYPE == 1) ? 
DecToInv : INVERTOUT; 
 
endmodule 

module SevenSegDec ( 
 input wire [3:0] inp, 
 output reg [6:0] out 
); 
 
module BusInverter ( 
 input wire [N-1:0] A, 
 output wire [N-1:0] B 
); 
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Why Are Modular Circuits Better? 
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Why Are Modular Circuits Better? 

A two-stage pipelined SDLX Processor 
Source: C. Sangani, A. Kasina (2) 



Chirag Sangani 06-01-2011 

Sequential Circuits 

• Time-dependent circuits: their state is 
determined not just by the input but also by 
current state. 

• Their behavior may vary for the same input at 
different times. 

• They may exhibit output without any input. 
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LCD Driver 

• Control of 16*2 character LCD display. 

• Control interface consists of a 7 bit bus: 4 bits 
data and 3 bits instructions. 

• To control the LCD, the data bits and the 
control bits have to be set, and the LCD_E bit 
has to be strobed at a specified maximum 
frequency. 



Chirag Sangani 06-01-2011 

LCD Driver 

module LCDDriver( 
 input wire CLK, 
 output reg[7:0] LCDCONTROL); 
 
reg [25:0] FREQGEN; 
 
always @(posedge CLK) 
begin 
 FREQGEN <= FREQGEN + 1; 
 case(FREQGEN[25:17]) 
  0: LCDCONTROL <= XYZ; 
  1: LCDCONTROL <= ABC; 
 endcase 
end 
 
endmodule 
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128-BIT AES ENCRYPTION 
FPGA Design Challenge Problem Statement 
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Terminology 

• Plaintext: Input data to the encryption block. 

• Ciphertext: Encrypted output  by encryption 
block. 

• Key: A secret binary number known by the 
two communicating parties 
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Advanced Encryption System 

• A symmetric-key encryption standard. 

• Key size: 128 bit. 

• Plaintext block size: 128 bit. 
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High-Level Description of the 
Algorithm 

• KeyExpansion — round keys are derived from the cipher key using 
Rijndael's key schedule 

• Initial Round 
– AddRoundKey — each byte of the state is combined with the round key using 

bitwise XOR 

• Rounds 
– SubBytes — a non-linear substitution step where each byte is replaced with 

another according to a lookup table. 
– ShiftRows — a transposition step where each row of the state is shifted 

cyclically a certain number of steps. 
– MixColumns — a mixing operation which operates on the columns of the 

state, combining the four bytes in each column. 
– AddRoundKey 

• Final Round (no MixColumns) 
– SubBytes 
– ShiftRows 
– AddRoundKey 
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Requirements 

• Develop a module that performs 128-bit AES 
encryption. 

• The module must be completely self-written 
and completely self-sufficient. 

• Input (key and plaintext) and output 
(ciphertext) must be through I/O or RAM.  
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