
Interrupts and Timers

Chirag Sangani

Interrupts

• Low level programming concept.

• Extremely important – used extensively in
modern computer programs.

• Irreplaceable.

Origin of Interrupts

• Normal view of a computer program:
sequence of instructions executed serially,
jumps are allowed.

• This view isn’t good enough for the real world.

• Programs for embedded systems usually
service real-life demands.

• Real-life demands don’t wait for anything.

Origin of Interrupts

• Consider a typical embedded system program:
it usually consists of an infinite loop, called the
“program loop”.

• In each iteration, the program checks whether
events have occurred, gives suitable responses
and performs periodic tasks.

• This model is sufficient if processor is
extremely fast with respect to real world.

Example

while(1){

 ----  Event ‘A’ handler

 ----  Event ‘B’ handler

 ----  Event ‘A’ occurs here

}

Why Interrupts?

• We need a method to handle events the
moment they occur, and not after some
delayed time.

• Interrupts are special events that can
“interrupt” the normal flow of a program.

• The processor stops the normal program,
handles the interrupt, and then resumes its
normal work.

Example

main(){

 while(1){

 ----  Event ‘A’ occurs here

 }

}

handleA(){

}

Timers

• A timer is a register. Recall that registers are
special, fixed-size variables with hardware
implications.

• The timer, when started, begins at 0. After
every time t, its value increases by 1.

• This process is independent of the CPU.

• When the timer reaches its maximum value, in
the next cycle, its value becomes 0 again and
the process repeats itself.

Timers

• Assume an 8 bit timer.

 255  Maximum value

 254

 .

 .

 .

 0  Starting value

Some statistics

• If the maximum value of a timer is n and clock
period is t, then:

1. Timer cycle period = (𝑛 + 1) × 𝑡

2. Frequency of timer = 𝑓 =
1

𝑡

3. Frequency of timer cycle =
1

(𝑛+1)×𝑡

Timers and Interrupts

• Timers can generate certain interrupts: two, to
be precise.

• These are called OVERFLOW interrupt and
COMPARE MATCH interrupt.

OVERFLOW interrupt

• OVERFLOW is generated when a timer tries to
exceed its maximum value and resets to 0.

• The name is derived from the fact that the
timer has “overflowed” its limit.

• The interrupt may or may not have a handler.
In either case, the timer continues to run;
remember: timers are independent of the
CPU.

OVERFLOW statistics

• Suppose a timer of maximum value n has a
time period t (also called as clock period).

• Then the timer cycle frequency =
1

(𝑛+1)×𝑡

• If OVERFLOW interrupt is enabled, then an
interrupt is generated in every cycle.

• Thus, OVERFLOW interrupt frequency

=
1

(𝑛+1)×𝑡

COMPARE MATCH interrupt

• There is a register called as OCR (Output
Compare Register), whose value we can set.

• After every clock period, the timer is
incremented by 1 (or reset to 0 in case it is at
maximum value).

• Before incrementing, the value of the timer is
compared to OCR. If the two are equal, a
COMPARE MATCH interrupt is generated.

OVERFLOW and COMPARE MATCH

MAX

OVERFLOW

OCR

OVERFLOW

COMPARE
MATCH

COMPARE
MATCH

COMPARE MATCH statistics

• Suppose a timer of maximum value n has a
time period t (also called as clock period).

• Then the timer cycle frequency =
1

(𝑛+1)×𝑡

• If COMPARE MATCH interrupt is enabled, then
an interrupt is generated in every cycle.

• Thus, COMPARE MATCH interrupt frequency

=
1

(𝑛+1)×𝑡

Summary of Timers

• A timer is not affected by interrupts: it
generated interrupts, but it does not stop
running because of them.

• Interrupts is how timers are useful. Sample
applications: digital clock, periodic events
(such as blinking LEDs quickly for POV globe),
etc.

Timer Modes

• A timer works in three modes: Normal, CTC
and PWM.

• All three modes are again unaffected by
interrupts, but all three modes can generate
interrupts.

• The timer mode used so far in this
presentation is normal mode.

Normal Mode

• Standard mode: Timer starts at 0, goes to
maximum value and then resets itself.

• OVERFLOW and COMPARE MATCH interrupts
generated as normal.

CTC (Clear Timer on Compare) Mode

• Timer starts at 0 as usual, but instead of
resetting after maximum value, it resets after
reaching value specified in OCR register.

 OCR  Maximum Value

 OCR – 1

 .

 .

 0  Starting Value

CTC mode statistics

• If clock time period is t:

1. Timer cycle time period = (𝑂𝐶𝑅 + 1) × 𝑡

2. Frequency =
1

(𝑂𝐶𝑅+1)×𝑡

• COMPARE MATCH interrupt will work
normally, but OVERFLOW interrupt will not
work (Why?).

PWM (Phase Width Modulation) Mode

• Simple method of obtaining analog output of
any value between 0 and 5V.

• Suppose desired output is x% of 5V. If, for a
time period t, the output is 5V for x% time and
is 0 for the remaining time, then average
voltage is x% of 5V.

• If this time period is extremely small and the
process is repeated continuously, then output
behaves as analog value.

PWM mode

PWM mode

• This “analog” value is obtained using timers.

• A specific pin is set as output. When the timer
reaches 0, the voltage of the pin is set to 5V.

• When the timer reaches the value specified by
OCR, on the next clock, the pin voltage is set
to 0 until the timer resets itself.

PWM statistics

• If clock time period is t and maximum timer
value is n:
1. Timer cycle time period = (𝑛 + 1) × 𝑡

2. Frequency =
1

(𝑛+1)×𝑡

3. Duty cycle =
𝑂𝐶𝑅+1

𝑛+1
× 100%

4. Output voltage =
𝑂𝐶𝑅+1

𝑛+1
× 5𝑉

• COMPARE MATCH interrupt and OVERFLOW
interrupt will work properly.

Thank you

