
Introduction to Embedded
Systems

Chirag Sangani

Embedded Systems

• Layman definition: Gadgets and devices

• Technical definition: Self-controlled devices

• Usually, such systems consist of I/O
(input/output) devices such as LCDs, keypads,
etc. and other devices like EEPROM (for
storing data) connected to a central
controlling device.

Example: MP3 Player

Controller

LCD

Music OP

Input

Memory

The MicroController (μC)

• Why “micro”?

• Larger controllers are available too: processors
that run computers are an example.

• A microcontroller is essentially a mini-
computer inside a single IC.

The Computer – μC analogy

• Inside the CPU, the main components are the
processor, RAM, hard disk and I/O.

• The microcontrollers has all the analogous
components inside a single IC: the processor
core, RAM, EEPROM (hard disk).

• I/O is present in the form of the pins of a
microcontroller.

Microcontroller(s)

• Multiple microcontrollers available in the
market.

• Vendors include Atmel, Intel, ARM, Cypress,
etc.

• We will use Atmel ATmega microcontrollers
because they are cheap, easy to use and
powerful.

The ATmega16
• 40 pin IC.

• 32 pins for I/O.

• 8 pins reserved.

• I/O pins divided
into 4 groups of
8 pins, called
ports.

• Ports labeled as
A, B, C and D.

How does a microcontroller work?

• Just like a computer, a microcontroller
executes a program.

• After the program is finished, nothing
happens.

• The program for a microcontroller is written in
C language (although other languages are
possible).

Some C operators

• | is bitwise OR.
Eg. 10100111 | 11000101 = 11100111

• & is bitwise AND.
Eg. 10100111 & 11000101 = 10000101

• ~ is bitwise NOT.
Eg. ~10100110 = 01011001

• << is shift left. >> is shift right.

Sample C program for a μC

int main(){

 return 0;

}

I/O

• Input / Output is via special variables called
“registers”.

• Registers are actual hardware memory locations
inside the μC. Their names and sizes are
predefined.

• When we assign a value to these registers in the
program, the actual value in the hardware
changes.

• These values can be changed multiple times at
any point in the program.

Example Register Manipulation

#include <…>

int main(){
 int i;
 for(i=0;i<10;i++){
 REG1 = i;
 }
 return 0;
}

I/O Registers

• There are 3 registers that control the I/O pins:
DDR, PORT and PIN.

• Each port has it’s own registers. Hence, port A
has registers DDRA, PORTA, PINA; port B has
registers DDRB, PORTB, PINB; and so on.

• DDR, PORT and PIN serve different functions.

DDR (Data Direction Register)

• DDR decides whether the pins of a port are
input pins or output pins.

• If the pin is input, then the voltage at that pin
is undecided until an external voltage is
applied.

• If the pin is output, then the voltage at that
pin is fixed to a particular value (5V or 0).

Setting Register Values

• DDR is an 8 bit register. Each bit corresponds
to a particular pin on the associated port.

• For example, the MSB on DDRA corresponds
to the pin A7.

7 1 5 4 3 2 6 0

A7 A6 A5 A4 A3 A2 A1 A0

DDRA

Interpretation of DDR values

• If a bit on the DDR register is 0, then the
corresponding pin on the associated port is
set as input.

• Similarly, if the bit is 1, then the pin is set as
output.

• Example: if DDRA = 0b10010110, then:

OP OP IN OP IN OP IN IN DDRA
MSB LSB

PORT Register

• PORT is also an 8 bit register. The bits on the
PORT register correspond to the pins of the
associated port in the same manner as in the
case of the DDR register.

• PORT is used to set the output value.

• If the pin is set as output, then a PORT value
of 1 will set voltage at that pin to 5V. If PORT
value is 0, then voltage is set to 0.

Pull up / Pull down

• What if we try to set the PORT value of a pin
that is configured as input?

• A separate purpose is served: that of pull up
or pull down.

• When an input pin is connected by a wire to
some specific voltage, it’s voltage also
becomes that same value.

Pull up / Pull down

• But, when the input pin is left free, it’s voltage
value is undecided. This is bad.

• To prevent this, a “default” value is assigned.
This value can be either 5V or 0, and is of
consequence only when the pin is
unconnected.

• The PORT value becomes this “default” value.

• If “default” value is 0, then pin is pulled down.
If it is 5V, then it is pulled up.

PIN register

• PIN is a register whose value can be read, but
cannot be changed inside the program.

• It gives the value of the actual voltage at a
particular pin. 5V corresponds to 1, and 0
corresponds to 0.

Summary
DDR = 0 DDR = 1

PORT = 0 PORT = 1 PORT = 0 PORT = 1

Pin is
input. If

unconnec
ted, PIN

is 0.

Pin is
input. If

unconnec
ted, PIN

is 1.

Pin is
output,
value is
0. PIN is
always

equal to
PORT

Pin is
output,
value is

5V. PIN is
always

equal to
PORT

Example Program 1

#include <avr/io.h>

int main(){
 DDRA = 0b11111111; // or 255 or 0xFF
 while(1){
 PORTA = PINC;
 }
 return 0;
}

Example Program 2

#include <avr/io.h>
#include <util/delay.h>

int main(){
 DDRA = 0xFF;
 while(1){
 PORTA = 0xAA;
 _delay_ms(1000);
 PORTA = 0x55;
 _delay_ms(1000);
 }
 return 0;
}

Thank you

