
Digital Design with FPGAs

By
Neeraj Kulkarni

Some Basic Electronics

• Basic Elements:
– Gates: And, Or , Nor, Nand, Xor …..
–Memory elements: Flip Flops, Registers

…..

• Techniques to design a circuit using
basic elements.

• Lets see an end result of such a
design:

Divide by 9 counter
By hand analysis

Very messy!

Typical ICs
• All the circuit with basic elements packaged into a

chip with some reconfigurability.

• More sophisticated approach of designing digital
circuits.

• eg: Designing a divide by 9 counter
– Requires only a counter IC (4029) and may be 1/2

gates.

• Limitation:
– Only limited number of ICs with limited functionalities.

FPGAs
• A fully configurable IC

• FPGAs contain programmable logic components
called logic blocks.

• Contain hierarchy of reconfigurable interconnects
that allow the blocks to be wired together.

• Logic Blocks can be configured to any complex
circuit.
– FPGA can be made to work as a Xor gate, a Counter or

even bigger- an entire Processor!

How to Program FPGAs

• Verilog: A Hardware Description
Language
–mostly describes a digital circuit

• Adds a level of abstraction in digital
design

• Basic Idea:Behavioral
Description of
required circuit

A complete
circuit

diagram

Verilog
Synthesiz

er

Introduction to Verilog
• Data types?

-Yes, called Drivers in Verilog

• Drivers: wire and register
–Wire: Connects 2 points in a circuit – wire clk
– Register (reg) : Stores values – reg A

• Arrays?
– wire [31:0] in
– reg [16:0] bus

Modules
• Modules are like ‘Black boxes’.

• Example: Inverter
module Inverter(
input wire A,
output wire B
);

assign B = ~A;
endmodule

ModuleInputs Outputs

Note:
Input and Output
ports of the
module should
be specified.

Combinational Circuits
• Combinational circuits are acyclic

interconnections of gates.
– And, Or, Not, Xor, Nand, Nor ……
–Multiplexers, Decoders, Encoders ….

• How are these gates, muxs etc. abstracted in
Verilog?
– Gates, Add, Multiply … : by simple operators like in C
–Multiplexers … : by control statements like if-else, case,

etc.

• Gate level implementation of above high level
operators done by Verilog synthesizer.

Some Operators
Arithmetic * Multiply

/ Division

+ Add

- Subtract

% Modulo

Logical ! Logical negation

&& Logical and

|| Logical or

Relational > Greater than

< Less than

== Equality

Shift >> Right shift

<< Left shift

Control Statements
• if-else, case :
– Exactly like C.
– Hardware view: implemented using

multiplexers

• for loops, repeat:
– for-loops are synthesizable only if length of

iteration is determined at compile time &
finite.

– repeat -similar to for loop.
– Hardware view: All loops are unrolled during

synthesis.

Syntax-Control Statements

 for (i = 0; i < n; i = i +1)
 begin

……..
 end

case(address)
 0 : …….
 1 : …….
 2 : ……..
 default : ……
endcase

if (…….)
begin
 …………
end
else begin
 ………..
end

repeat (18)
begin
 ………..

end

assign statement
• Continuous assignment statement.
• Used for modeling only combinational logic.

module BusInverter(
input wire A,
output wire B

);
assign B = ~A;

endmodule

• Basically B is shorted to ~A.
• RHS should have variable of wire type.

Example-1 bit Full Adder
module full_adder(

input wire a,
 input wire b,
 input wire cin,
 output wire sum,
 output wire carry
);
 assign sum = a & ~b &
~cin | ~a & b & ~cin |~a &
~b & cin | a & b & cin;
 assign carry = a & b | a
& cin | b & cin;
endmodule

module full_adder(
input wire a,

 input wire b,
 input wire cin,
 output wire sum,
 output wire carry
);
 assign { carry, sum }
= a+b+cin;
endmodule

Gate Level
Description

Behavioral
Description

Sequential Circuits

• Circuits containing state elements are
called sequential circuits.

• The simplest synchronous state
element: Edge-Triggered D Flip-Flop

• How do you implement such an element
in Verilog?

f
Q

D

C

C

D

Q

always@ Block
• It is an abstraction provided in Verilog to

mainly implement sequential circuits.
• Also used for combinational circuits.

• Structure of always block:
always @(#sensitivity list#)

 begin
………. //No assign statements inside always@

end

• Execution of always block depends on the
sensitivity list.

The Sensitivity List
• Run continuously. (mostly used in Test Benches)

always

• Run when any variable changes its value.
always @(*) //for combinational ckts

• Run when the variables `a' or `b' change their
value.
always @(a, b)

• Run when a positive edge is detected on CLK.
 always @(posedge CLK) //for sequential
ckts

initial block
•An initial block is executed only once
when simulation starts

•This is useful in writing test benches

•If we have multiple initial blocks, then
all of them are executed at the
beginning of simulation

Example- Counter
module Counter(

input wire CLK,
output reg [31:0] OUT

);
initial

OUT <= 0;
always @(posedge CLK)

OUT <= OUT + 1;
endmodule

Note the ‘<=‘ sign
for register
assignment

Divide by 9 counter
In Verilog

module Counter(
input wire CLK,
output reg [4:0] OUT
);
initial
OUT <= 4’b0;
always @(posedge CLK)
begin
if(OUT==4’b1000)
OUT <= 4’b0;
else
OUT <= OUT + 1;
end
endmodule

Blocking and Non-Blocking Statements

• Non-blocking assignments happen in
parallel.

always @ (#sensitivity list #) begin
B <= A ;
C <= B ; (A,B) = (1,2) -> (B,C) = (1,2)

end

• Blocking assignments happen
sequentially.

always @ (#sensitivity list #) begin
B = A ;
C = B ; (A,B) = (1,2) -> (B,C) = (1,1)

end

Points to Note
• Use always@(*) block with blocking

assignments for combinational
circuits.

• Use always@(posedge CLK) block with
non-blocking assignments for
sequential circuits.

• Do not mix blocking and non-blocking
assignments.

Extras- Bit Literals

• If no size given, number is
assumed to be 32 bits.

• If <size> is smaller than value
–MSB of value truncated

• If <size> is greater than value
–MSB of ‘value’ filled with zeros

• e.g. - hexadecimal: 4’hB
• If no base given, number

assumed to be decimal. e.g. - 11

4’b1011

Size in
bits

Base
format
(d, b, h)

Value

Questions?

	Slide 1
	Some Basic Electronics
	Divide by 9 counter By hand analysis
	Typical ICs
	FPGAs
	How to Program FPGAs
	Introduction to Verilog
	Modules
	Combinational Circuits
	Some Operators
	Control Statements
	Syntax-Control Statements
	assign statement
	Example-1 bit Full Adder
	Sequential Circuits
	always@ Block
	The Sensitivity List
	initial block
	Example- Counter
	Divide by 9 counter In Verilog
	Blocking and Non-Blocking Statements
	Points to Note
	Extras- Bit Literals
	Slide 24

