Communication using MCU

Rajat Arora Mechanical Engineering

Communication with MCU

Types

- Simple Parallel Transfer
- SPI
- UART
- USB

Communication Technique

A, B: communication participants

Classification

- Parallel Transfer
- Serial Transfer

or

- Synchronous
- Asynchronous

Serial and Parallel Mode

Serial Mode

Parallel Mode

Synchronous Transmission

The diagram corresponds to the transfer of the data 10010111. It corresponds to the value of the data at every rising edge of the clock.

Asynchronous Transmission

- Asynchronous transmission allows data to be transmitted without the sender having to send a clock signal to the receiver.
- Special bits are added to each word which are used to synchronize the sending and receiving units.
- A bit called the "Start Bit" is added to the beginning of each word that is to be transmitted. The Start Bit is used to alert the receiver that a word of data is about to be sent.
- A bit called the "Stop Bit" is also sent.

Baud Rate

No. of bits transmitted/received per second = _____bits/sec.

UART

- UART is a simple half-duplex, asynchronous, serial protocol.
- Simple communication between two equivalent nodes.
- Any node can initiate communication.
- Since connection is half-duplex, the two lanes of communication are completely independent.

Figure 17: Basic UART packet format: 1 start bit, 8 data bits, 1 parity bit, 1 stop bit.


```
(XCK/T0) PB0 ☐ 1
                                PA0 (ADC0)
     (T1) PB1 □ 2
                          39
                                PA1 (ADC1)
(INT2/AIN0) PB2 2 3
                          38
                                PA2 (ADC2)
(OC0/AIN1) PB3 4
                          37
                                PA3 (ADC3)
     (SS) PB4 ☐ 5
                          36
                                PA4 (ADC4)
   (MOSI) PB5 🗆
                          35
                                PA5 (ADC5)
   (MISO) PB6 ☐ 7
                          34
                                PA6 (ADC6)
    (SCK) PB7 

                          33
                                PA7 (ADC7)
       RESET [
                          32
                                AREF
         VCC | 10
                          31
                                GND
         GND | 11
                          30
                                AVCC
        XTAL2 | 12
                          29
                                PC7 (TOSC2)
        VTAL 1
                          28
                                PC6 (TOSC1)
    (RXD) PD0 

                          27
                                PC5 (TDI)
    (TXD) PD1 15
                          26
                                PC4 (TDO)
    (INTO) PD2 T 16
                          25
                                PC3 (TMS)
    (INT1) PD3 [
                          24
                                PC2 (TCK)
   (OC1B) PD4 18
                          23
                                PC1 (SDA)
   (OC1A) PD5 [
                19
                          22
                                PC0 (SCL)
   (ICP1) PD6 [
                20
                                PD7 (OC2)
                          21
```


Device 1 Device 2

- Three simple commands :
- ✓ putchar(char);
 - sends 8-bit characters through UART
- ✓ getchar();
 - receives 8-bit characters via UART
- ✓puts(string);
 - sends a constant string

- On MCU side use CVAVR
- On computer side :- use C, Java , Matlab , Python

SPI

- In SPI, data is transmitted serially, i.e. bit by bit as opposed to parallel communication where all the data is sent multiple bits at a time.
- We will study synchronous SPI, where there is a clock generated and the data is transferred at the rate of the clock pulse

Pins in SPI

- CLK is generated by Master.
- MOSI is Master Out Slave In: Data sent by Master to Slave.
- MISO is Master In Slave Out: Data sent by Slave to Master.
- SS is slave select: Slave communicates with Master only if this pin's value is set as LOW.

Clock Pulse

Set time rates

or

Set clock

Time t = 0

Master generates the first clock pulse:

Master generates the second clock pulse:

Master generates the seventh clock pulse:

Master generates the last clock pulse:

Cool Applications

GPS

GPS

Distance Calculation

Value Sent: t1 Time Sent : t1 Value Received: t2 Time Received : t2

Distance = speed x time taken
 = c x (t2 - t1)

Triangulaltion

Circle and a sphere

Target locked

GPS Module

NMEA Format

•\$GPGGA,123519,4807.038,N,01131.000,E,1,08,0.9,545.4,M,46.9,M,,*

- \checkmark 2nd data is Latitude (i.e. 4807.038)
- ✓ 4th data is Longitude (i.e. 01131.000)
- ✓ 7th data is No. of satellites in view(i.e. 08)

GPS: MCU Interface

Device 1 Device 2

GSM

GSM Module

1. Modem

2. SIM card

AT Commands Basics

- AT+X? //Queries value of X
- AT+X= //Sets value of X
- ATD 9559753551; //Calls number
 OK

• Entire AT command set can be accessed from:

http://www.developer.nokia.com/Community/Wiki/AT_Commands

SMS: Using AT Commands

- AT+CMGF=1 //Text Mode OK
- AT+CMGS="7607458472"
 Hello World
 +CMGS: 44
 OK