
Introduction To Microcontrollers

Electronics Club

IIT Kanpur

What is a

Microcontroller….?

http://www.youtube.com/watch?v=4QwsuVEjzFo

Microcontroller is an embedded computer chip that executes

programs and controls most of the electronic gadgets and

appliances people use on a daily basis, right from electric

toothbrushes to anti-lock brakes in cars.

1. Intro

I/O ControlEEPROM

Every

Microcontroller

Has….

Then what’s the difference between a Computer and a Microcontroller?

Well…..

Will you use a computer with 2.5Ghz Intel core I7, with 8GB RAM, 1TB

Hard disk, 2GB graphics card to make a techkriti game…?

No, right!

● Because its highly expensive.

● It is designed to be used for various purposes like word processing,

multimedia,gaming so on. In fact it has almost no limit to the

applications it can run.

● Its applications demand very high processing power.

On the other hand,Microcontroller is limited in its processing power.

Atmega328 has 8bit AVR CPU, 20MHz clock, 32kB Flash, 2kB RAM which is

considered to be more than sufficient… for many applications!

It is designed to be used in specific control applications like….

● Keyboard/ Mouse/ Calculators

● Water level Controllers/ Voting Machines

● Airbag System in Vehicles

● Basic GSM Mobiles

● Digital Washing Machines/ Microwave Oven

Would you believe that each one of you is using at
least 20 microcontrollers in your house??!! Well,
that’s a fact.

Now let’s start building something using a
Microcontroller

Out of several available vendors like Atmel,

Intel, ARM, Cypress, etc. We will use

Atmel’s ATmega microcontrollers

ATMEGA16

● 40 pin IC

● 32 I/O pins

● 8 pins reserved for system reset,

power, clock circuitry

● I/O pins are divided into 4 groups of

8pins each. We call each group a

PORT

● Ports are labelled as A, B, C, D

So, let's begin with the very basic question of how to

control these Input / Output pins ?

It is exactly for this purpose

I/O Registers are used….

The only way of interaction with external world is through

these I/O pins.

I/O Registers
● I/O pins are controlled through special variables called “registers”

● Registers are special memory locations inside the μC with predefined

names and sizes. They act as a bridge between CPU & external I/O pins.

● Unlike normal memory, assigning a value to these registers in the

program changes the corresponding hardware configuration.

● And, these values can be altered multiple number of time at any point in

the program.

● There are 3 registers that control the I/O pins: DDR, PORT and PIN.

Each port has it’s own registers. Hence, DDRC, PORTC, PINC registers

for port C; DDRB, PORTB, PINB for port B and likewise

DDR - Data Direction Register
● Decides whether the pin is Input or Output

● DDR is an 8 bit read/write register. Each bit corresponds to a particular

pin on the associated port

● If a bit on the DDR register is 0, then the corresponding pin on the

associated port is set as input

● Similarly, if the bit is 1, then the pin is set as output

● For instance, if DDRA = 0b10010110, then

A7 A0

PORT Register
● PORT is also an 8 bit read/write register. The bits on the PORT register

correspond to the pins of the associated port in the same manner as in the

case of the DDR register.

● PORT is used to set the output value.

● If the pin is set as output, then a PORT value of 1 will set voltage at that

pin to 5V, and PORT value 0 sets the voltage to 0V.

● If the pin is configured as an input, PORT value serves the purpose of

pull up(if ‘1’) or leave the input as floating(if ‘0’).

PIN Register

● PIN is an 8-bit read-only register meaning it can only be read but cannot

be changed inside the program

● It contains the value of the actual voltage at a particular pin. 1, if the value

at the required pin is 5V and 0 for 0V.

Summary

PORTx.n=0 PORTx.n=1 PORTx.n=0 PORTx.n=1

Pin is set to be

input.Left floating

unless an external

voltage is applied

Avoid this

practice as the

operation gets

erratic.

Pin is set to be

input and

pulled-up.

If unconnected,

PINx.n is ‘1’

Pin is set to be

output with

value ‘0’.

PINx.n is equal

to PORTx.n

Pin is set to be

output with

value ‘1’.

PINx.n is equal

to PORTx.n

DDRx.n=0 DDRx.n=1

Circuit Level

Implementation of I/O

control….

Just to emphasize the

difference between normal

memory and I/O registers!

Is it really a bad idea to leave a MCU input pin floating….?

● Increases the error of operation due to

unknown state of input

● Drastically increases the power consumption

especially in CMOS based circuits due to

increased current

● Pulling up/ down with low value resistors is

also a bad practice as the current consumption

might be increased more than the rating value

which might result in unusual IC operation.

10k Ohm Resistors are typically used for pull

up/down purpose.

Yes!!!

Now that we got a basic idea of

how to control the I/O pins, let’s

get into programming our MCU….

● Atmega microcontrollers can be programmed

using either Assembly or C language

● Programs in C are more flexible and quicker

to develop.

● In comparison, programs in assembly often

have better performance, they run faster and

use less memory, resulting in lower cost

Programming

.include "m8515def.inc"

 ;Initialize the microcontroller stack pointer

 LDI R16, low(RAMEND)

 OUT SPL, R16

 LDI R16, high(RAMEND)

 OUT SPH, R16

 ;Configure portB as an output put

 LDI R16, 0xFF

 OUT DDRB, R16

 ;Toggle the pins of portB

 LDI R16, 0xFF

 OUT PORTB, R16

 RCALL Delay

 LDI R16, 0x00

 OUT PORTB, R16

 RCALL Delay

 ;Delay subroutine

Delay: LDI R17, 0xFF

loop: DEC R17

 BRNE loop

 RET

Sample Assembly code to blink

PORTB pins.

It’s that hard that in order to

create a delay of 1sec we have to

know the clock speed, instruction

execution time of different types

of instructions and then write a

routine calculating manually

execution time of that routine….

#include <avr/io.h>

#include <util/delay.h>

int main(){

DDRB = 0xFF;

while(1){

PORTB = 0xFF;

_delay_ms(1000);

PORTB = 0x00;

_delay_ms(1000);

}

return 0;

}

Sample C code to blink

PORTB pins.

Which Programming Language will
you choose?

I’ll choose C

Useful

Libraries…..

They help us concentrate

more on code rather than

internal hardware

configuration of

microcontrollers

avr/io.h
● Includes appropriate IO definitions and read/write functions for the device

● It resolves the problem of handling the registers and provides a convenient way to

treat the registers as variables. This makes it simple to assign values to them.

● E.g. to write data into port B data direction register, the register can be addressed

using the variable ‘DDRB’ .

DDRB= 0xff ;

In code, you can write an expression like this one:

You can treat all other registers in similar fashion.

util/delay.h
This header file defines 2 delay loops.

1. _delay_us(DELAY_TIME) : creates a delay of ‘DELAY_TIME’ microseconds

2. _delay_ms(DELAY_TIME): creates a delay of ‘DELAY_TIME’ milliseconds

RULES :

● Variables are not allowed to use as an argument, instead you can use predefined

integer constants.

● You need to specify the CPU operating frequency (use: #define F_CPU).

int main()

{ #define F_CPU 1000000

int DELAY=0;

DELAY=29;

_delay_us(DELAY);

}

int main()

{ #define F_CPU 1000000

int DELAY=0;

for(DELAY=35;DELAY>=0;DELAY--)

{ _delay_us(DELAY); }

}

int main()

{ #define F_CPU 1000000

_delay_us(29);

//…

}

int main()

{ #define F_CPU 1000000

#define DELAY 35

_delay_ms(DELAY);

}

Miscellaneous

● string.h : defines some functions to make operations over strings. Like

comparing, joining two strings, copying two strings, moving one string to

some other location and few more.

● math.h : defines mathematical functions like sin(), cos(), tan(), exp() and

much more.

● stdlib.h : it include some standard library functions like exit(),

calloc(),malloc(),qsort() {qsort stands for quick sorting}, realloc() etc…,

Basic C operators that might come handy….
Operator Symbol Operation Syntax Use

bitwise OR | 10100111 | 11000101 = 11100111
PORTA = (PORTA |

0b00001010) ;

Set

bitwise AND & 10100111 & 11000101 =

10000101

 PORTB = (PORTB &

0b00001010) ;

Clear,

Mask

bitwise NOT ~ ~10100110 = 01011001
PORTB=~ 0b00001010 ;

Toggle all

 bitwise XOR ^ 10100111 ^ 11000101 =

01100010

PORTB = (PORTB ^

0b00001010) ;

Toggle

specific

 shift left

 shift right

<<

>>

(0b00000001<<3)=0b00001000

(0b00001000>>3)=0b00000001

PORTB=PORTB ^ (1 << 2);

PORTB=PORTB ^ (1 >> i);

Display

motion

Okay, code is done….!

Now What…?

● Turn your source code into

machine code(.hex file) with

a compiler

● Using uploader software on

your big computer and a

hardware flash programmer,

send the machine code to

your target AVR chip, which

stores the instructions in its

nonvolatile flash memory

C Code

Machine
Code

AVR

Compiler

Uploader Software &

Flash Programmer

Softwares Required

● Compiler : avr-gcc
● Uploader Software : avrdude

Software Download
Windows users have two options to download the software

1. Atmel Studio IDE (huge)

2. WinAVR (1/20 the file size and 9/10 of the functionality)

Link : https://sourceforge.net/projects/winavr/files/WinAVR/20100110/

Link : http://www.atmel.com/microsite/atmel-studio/

Note : During the installation, WinAVR will offer to change your PATH variable so
that all of the binary files (importantly make, avrdude, and avr-gcc) are available
without typing the full pathnames in. Be sure that you allow this.

https://sourceforge.net/projects/winavr/files/WinAVR/20100110/
http://www.atmel.com/microsite/atmel-studio/

3 Softwares will be installed along with WinAVR setup

● Mfile : To configure your make file

● Programmers Notepad : Editor

● AVR Insight : Command line to communicate with your programmer

Makefile??? Now what is a makefile? makefile is a set of instructions for any

specific project which directs 'make'(utility that builds executable programs

and libraries using your source code) on how to compile and link a program.

It supports in finding the target file and dependencies if any. It also specifies

what avr device is being used.

Configuring ‘Make’ file
In the MFile GUI that was installed along with WinAVR setup, make following

changes

● MCU

This is the type of AVR chip you’re using. In our case, we’re using an ATmega16,

so it reads atmega16.

● F_CPU

This definition tells the compiler what clock speed your chip is running at. If

you don’t have an external clock source, like a crystal, this is either 1,000,000

or 8,000,000 for the ATmega chips—one megahertz or eight megahertz. Getting

this right will matter for the timing of serial communication, and anything

else where timing is key like delay functions.

● BAUD

This is the baud rate that you’re going to use for computer-to-AVR serial

communications, and 9,600 baud is a good conservative default.

● MAIN

This entry is just the name of the program that you’re compiling and flashing

—the code that contains the main() routine.

● PROGRAMMER_TYPE

The type of programmer you are using

After making above changes, use Tools>Make All option in
programmer’s notepad to create .hex file of your source code.
Don’t forget to place your C code and make file in same directory

Flash Programmer

USBASP

Programmer

It is a cheap USB
in-circuit programmer for
Atmel AVR controllers

Connections between

USBASP Programmer and

Atmega16

Pins labelled same are to be

shorted….

● After making connections of programmer, open your windows command prompt

and using specific avrdude commands you can upload your program onto AVR

chip

Check various AVRDUDE commands here :

http://www.ladyada.net/learn/avr/avrdude.html

If you are feeling uncomfortable with terminal command executions you can also

download a avrdude GUI from here : https://github.com/elementzonline/USBASP

This GUI will also help you to make changes to FUSE bits(to use external clocks) in

more simple way

http://www.ladyada.net/learn/avr/avrdude.html
http://www.ladyada.net/learn/avr/avrdude.html
https://github.com/elementzonline/USBASP

If you have problems with the driver for

usbasp programmer/ detection of usbasp

programmer install/update the driver for

usbasp

Check this for doing so :

https://netmaxtech.com/how-to-make/install-us

basp-driver-windows-8-and-windows

https://netmaxtech.com/how-to-make/install-usbasp-driver-windows-8-and-windows
https://netmaxtech.com/how-to-make/install-usbasp-driver-windows-8-and-windows
https://netmaxtech.com/how-to-make/install-usbasp-driver-windows-8-and-windows

References
Libraries : http://www.circuitstoday.com/avr-gcc-library-of-avr-studio

Change FUSE bits : Helps in configuring various clock sources and their frequencies

http://treehouseprojects.ca/fusebits/

Interrupts :

http://www.avr-tutorials.com/interrupts/The-AVR-8-Bits-Microcontrollers-External-Int

errupts

Programming Using USBASP :

https://elementztechblog.wordpress.com/2014/06/13/programming-atmega16-using-avr-

usbasp/

http://www.circuitstoday.com/avr-gcc-library-of-avr-studio
http://treehouseprojects.ca/fusebits/
http://treehouseprojects.ca/fusebits/
http://www.avr-tutorials.com/interrupts/The-AVR-8-Bits-Microcontrollers-External-Interrupts
http://www.avr-tutorials.com/interrupts/The-AVR-8-Bits-Microcontrollers-External-Interrupts
http://www.avr-tutorials.com/interrupts/The-AVR-8-Bits-Microcontrollers-External-Interrupts
https://elementztechblog.wordpress.com/2014/06/13/programming-atmega16-using-avr-usbasp/
https://elementztechblog.wordpress.com/2014/06/13/programming-atmega16-using-avr-usbasp/
https://elementztechblog.wordpress.com/2014/06/13/programming-atmega16-using-avr-usbasp/

