

Introduction to Microcontrollers

Shivendu Bhushan Sonu Agarwal

Things to be covered today...

- Embedded System Introduction, Examples
- Microcontrollers basic features
- Input and output from a micro-controller
- Programming a micro-controller
- Interfacing Character LCD with Micro-controller
- How to use Infrared Tsop sensor ?

Embedded Systems

- Gadgets and devices
- Self controlled devices

 Contains I/O devices, storage devices and a central 'controller'

Example: Music player

Output

Controller

Output

Storage Device

Snake Game, Electromania 2013

Line Following Bot, Techfest 2014

Micro-Controllers

- Why "micro"? Larger controllers are available too: processors that run computers
- Out of several available vendors like Atmel, Intel, ARM,
 Cypress, etc. We will use Atmel ATmega microcontrollers

Like computers they execute programs. We will use C as the coding language

ATMEGA 8

- 28 pin IC
- 23 pins for I/O
- 5 pins reserved
- I/O pins divided into 3 groups of 8* pins, ca (XTAL1/TOSC1) PB6 [9
- Ports labelled as B, C and D

I/O Registers

- Input / Output is controlled through special variables called "registers"
- Registers are actual hardware memory locations inside the μCs with predefined names and sizes
- Assigning a value to these registers in the program changes the corresponding hardware configuration. And, these values can be altered multiple number of time at any point in the program.
- There are 3 registers that control the I/O pins: DDR, PORT and PIN.
- Each port has it's own registers. Hence, DDRC, PORTC, PINC registers for port C; DDRB, PORTB, PINB for port B and likewise

DDR(Data Direction Register)

- Decides whether the pin is Input or Output
- DDR is an 8 bit register. Each bit corresponds to a particular pin on the associated port
- If a bit on the DDR register is 0, then the corresponding pin on the associated port is set as input
- Similarly, if the bit is 1, then the pin is set as output
- If a pin is configured as input, then it has some floating voltage unless an external voltage is applied
 - For an output pin, the voltage is fixed to a particular value

Setting Register Values

MSB of DDRB corresponds to the pin A7

• If DDRA = 0b10010110, then:

PORT Register

- PORT is also an 8 bit register. The bits on the PORT register correspond to the pins of the associated port in the same manner as in the case of the DDR register.
- PORT is used to set the output value.
- If the pin is set as output, then a PORT value of 1 will set voltage at that pin to 5V, and PORT value 0 sets the voltage to 0V.
- If the pin is configured as an input, PORT value serves the purpose of pull up or pull down.

PIN Register

- PIN is a register whose value can be read, but cannot be changed inside the program.
- It gives the value of the actual voltage at a particular pin. 1, if the value at the required pin is 5V and 0 for 0V.

Summary

DDR = 0		DDR = 1	
PORT = 0	PORT = 1	PORT = 0	PORT = 1
Pin is	Pin is	Pin is	Pin is
input. If	input. If	output,	output,
unconnec	unconnec	value is	value is
ted, PIN	ted, PIN	0. PIN is	5V. PIN is
is 0.	is 1.	always	always
		equal to	equal to
		PORT	PORT

Some C concepts

- | is bitwise OR. Eg. 10100111 | 11000101 = 11100111
- & is bitwise AND. Eg. 10100111 & 11000101 = 10000101
- ~ is bitwise NOT. Eg. ~10100110 = 01011001
- << is shift left. >> is shift right

Simplest C program for a microcontroller

```
int main(){
  return 0;
 }
```

Example Program 1

```
#include <avr/io.h>
int main(){
DDRA = 0b11111111; // or 255 or 0xFF
while(1){
PORTA = PINC;
}
return 0;
}
```

Example Program 2

```
#include <avr/io.h>
#include <util/delay.h>
int main(){
DDRA = 0xFF;
while(1){
PORTA = 0xAA;
_delay_ms(1000);
PORTA = 0x55;
_delay_ms(1000);
return 0;
```

How to Program MCU?

AVRSTUDIO

#Problem: What kind of files MCU can

execute? #Problem: How to transfer that file to MCU?

AVR Studio

Select Tools

Select Add STK500

Select AVR programming

Select COM port

- We interface an LCD to our microcontroller so that we can display messages, outputs, etc.
- Sometimes using an LCD becomes almost inevitable for debugging and calibrating the sensors
- We will use the 16x2 LCD, which means it has two rows of 16 characters each. Hence in total we can display 32 characters

IR - TSOP Pair!

Just Think Over!

- TSOP sensor detects the presence of light from the Infrared LED
- How will it distinguish from other Infrared light already present
- Should we use some kind of encoding?
- TSOP sensor detects Infrared light only at 38 KHz
- How do we generate light at 38KHz?
- Timers and Interrupts... we will talk in the next lecture

Thanks **

Shivendu Bhushan 351 / Hall 2 shivendu@iitk.ac.in 8960419775

Sonu Agarwal 368 / Hall 3 sonuagr@iitk.ac.in 9005888958

Swapnil Upadhyay F-102 / Hall 5 swapnilu@iitk.ac.in 7417279731, 7379599283

Website : http://students.iitk.ac.in/eclub/index.php

FB Group: https://www.facebook.com/groups/eclub.iitk/

E-mail: eclub.iitk@gmail.com

Youtube: http://www.youtube.com/user/electronicsclub