Analog Circuits Design

Electronics Club, IIT Kanpur

Outline

- Op-amp
 - Basics
 - Amplifiers
 - Adder and subtractor
 - Filters
 - Schmidt Trigger
- BJT
 - Inverter
 - CE amplifier

Op-amp

- An ideal op-amp
 - Infinite differential gain
 - Zero common mode gain
 - Infinite input impedance
 - Zero output impedance
 - Infinite bandwidth
- Some non-idealities
 - Finite gain
 - Offset voltage
 - Finite output voltage
 - Finite bandwidth

Op-amp

- An almost ideal black box.
- Very high differential gain and input impedance.
- Gain control through negative feedback.
- Virtual Short

Op-amp Amplifier

- Negative feedback through resistors.
- Inverting amplifier.
- Non-inverting amplifier.
- Buffer

Vout

Op-amp adder

• Analysis is similar to an inverting or non-inverting amplifier.

$$Vout = -\frac{R1}{R2}(V1 + V2)$$

Op-amp Filters

- Filters Low pass, High pass, and Band pass
- Integrator
- Differentiator

Op-amp

- Positive feedback
- Schmitt trigger

Schmitt trigger multi-vibrator

• Made using a Schmitt trigger

Bipolar Junction Transistor

- Most basic operation is a switch.
- Can be used to make a simple inverter.
- Also can be used as an amplifier.

Thank You...

Electronics Club http://students.iitk.ac.in/eclub/